import typer from typing import Optional from pathlib import Path from loguru import logger import cv2 from tqdm import tqdm import numpy as np import pandas as pd import shutil from datetime import datetime import matplotlib import os matplotlib.use("Agg") # use non-interactive backend import matplotlib.pyplot as plt from predict import Model app = typer.Typer() @app.command(help="Export videos to images (to a dir per video)") def export_videos_to_images( input_dir: Path = typer.Argument(..., help="Input directory"), output_dir: Path = typer.Argument(..., help="Output directory"), ext: str = typer.Option("avi", help="Video Extension"), path_filter: Optional[str] = typer.Option(None, help="input path filter"), patient_prefix: Optional[bool] = typer.Option( True, help="use patient info as output dir prefix" ), copy_extent: Optional[bool] = typer.Option( True, help="copy extent files to output dir" ), ): # log all the arguments passed in logger.info(f"Function called with arguments: {locals()}") # find all video files in input_dir input_dir = Path(input_dir) output_dir = Path(output_dir) output_dir.mkdir(parents=True, exist_ok=True) video_files = list(input_dir.glob(f"**/*.{ext.lower()}")) video_files.extend(list(input_dir.glob(f"**/*.{ext.upper()}"))) logger.info(f"# of avi videos found: {len(video_files)}") if path_filter is not None: logger.info(f"Filtering videos with {path_filter}") video_files = [x for x in video_files if path_filter in str(x)] logger.info(f"# of avi videos found after filtering: {len(video_files)}") video_files.sort(key=lambda x: x.name) # sort by name ascending # log each video path after filtering, one per line logger.info(f"{os.linesep}" + f"{os.linesep}".join([str(x) for x in video_files])) # check that all the extent files exist # the extent (.csv) should be in the same directory as the video # the video filename would start with video_ # the extent filename would start with extents_ if copy_extent: all_exist = True for video_path in video_files: extent_filename = video_path.stem.replace("video_", "extents_") extent_path = video_path.parent / f"{extent_filename}.csv" if not extent_path.exists(): logger.error(f"Extent file {extent_path} does not exist") all_exist = False if not all_exist: logger.error("Extent files do not exist for all videos") return for video_path in video_files: # copy extent file to output dir if copy_extent: extent_filename = video_path.stem.replace("video_", "extents_") extent_path = video_path.parent / f"{extent_filename}.csv" shutil.copy(extent_path, output_dir) # Dir structure: Patient_Info / [PATIENT_ID] / [DATE] / video / xxx.avi patient_id = ( video_path.parent.parent.parent.name ) # WARNING: Hard-coded based on dir structure video_name = video_path.stem logger.info(f"Processing video {video_name} of patient {patient_id}") # create subdirectory for each video sub_dir = output_dir / ( f"{patient_id}-{video_name}" if patient_prefix else video_name ) sub_dir.mkdir(parents=True, exist_ok=True) # read video and export frames cap = cv2.VideoCapture(str(video_path)) frame_count = 0 while cap.isOpened(): ret, frame = cap.read() if ret: # padding frame_count with zeros cv2.imwrite(str(sub_dir / f"{frame_count:03}.jpg"), frame) frame_count += 1 else: break @app.command(help="Evaluate model on a directory of images") def eval( input_dir: Path = typer.Argument(..., help="Input directory"), input_model: Path = typer.Argument(..., help="Input model"), imgsz: int = typer.Option(640, help="Image size"), class_id: int = typer.Option(0, help="Class id to filter"), conf_thresh: float = typer.Option(0.5, help="Confidence threshold"), video_ext: str = typer.Option("avi", help="Video Extension"), out_dir: Path = typer.Option("runs", help="Output directory"), gt_csv_path: Path = typer.Option( "results_20230822_aorta_identified_added_by_Ray.csv", help="Ground truth csv path", ), no_extent: Optional[bool] = typer.Option(True, help="no extent file"), write_viz: Optional[bool] = typer.Option(False, help="write viz images"), gt_column_name: str = typer.Option("aorta_identified", help="Ground truth column"), ): # check inputs are valid assert input_dir.exists(), f"Input directory {input_dir} does not exist" assert input_model.exists(), f"Input model {input_model} does not exist" assert gt_csv_path.exists(), f"Ground truth csv {gt_csv_path} does not exist" # load model model = Model( model_path=str(input_model), imgsz=imgsz, classes=[class_id], # filter by class id, only aorta device="CPU", plot_mask=True, conf_thres=conf_thresh, is_async=False, n_jobs=1, ) # setup output directory out_dir = Path(out_dir) # create a sub output directory of current date and time start_t = datetime.now() start_timestamp = start_t.strftime("%Y_%m_%d_%H_%M_%S") out_dir = out_dir / f"max_aorta_result-{start_timestamp}" out_dir.mkdir(parents=True, exist_ok=True) # log to file logger.add(str(out_dir.absolute()) + "/eval_{time}.log") out_csv_p = out_dir / "results.csv" out_trace_csv_p = out_dir / "trace.csv" logger.info(f"Output directory: {out_dir}") # find all directories in input_dir input_dir = Path(input_dir) sub_dirs = [x for x in input_dir.iterdir() if x.is_dir()] sub_dirs.sort(key=lambda x: x.name) # sort sub_dirs by name ascending logger.info(f"# of subdirectories found: {len(sub_dirs)}") num_sub_dirs = len(sub_dirs) has_patient_prefix = False if sub_dirs[0].name.startswith("video") else True # setup csv headers trace_headers = ["video", "image_idx", "aorta_pixels", "aorta_mm", "conf"] headers = ["video", "max_aorta_pixels", "max_aorta_mm", "max_image_idx", "conf"] if has_patient_prefix: headers.insert(0, "patient_info") # loop through each subdirectory of images for idx, sub_dir in enumerate(sub_dirs): max_aorta_w = -1 # max aorta width in pixels max_aorta_w_mm = -1 # max aorta width in mm max_aorta_viz = None max_aorta_im_path = None max_center_x, max_center_y = -1, -1 max_conf = None max_im_n = "" # read the extent file of the images # the extent file should be in the same directory as the video video_filename = ( sub_dir.name if not has_patient_prefix else "-".join(sub_dir.name.split("-")[1:]) ) extent_filename = video_filename.replace("video_", "extents_") extent_file = sub_dir.parent / f"{extent_filename}.csv" extents = None if not no_extent: assert extent_file.exists(), f"Extent file {extent_file} does not exist" extents = pd.read_csv(extent_file).to_dict("records") logger.info(f"Processing subdir {sub_dir.name} ({idx+1}/{num_sub_dirs})") # find all images in sub_dir images = list(sub_dir.glob("*.jpg")) # Sort the list of images in ascending order by name images.sort(key=lambda img: img.name) logger.info(f"\t# of images found: {len(images)}") # create a viz output directory for each sub_dir out_sub_viz_dir = out_dir / sub_dir.name Path(out_sub_viz_dir).mkdir(parents=True, exist_ok=True) for im_idx, image_path in enumerate(tqdm(images)): # read image cv_frame = cv2.imread(str(image_path)) cv_width = cv_frame.shape[1] # inference viz_frame, results = model.predict(cv_frame) bbox_xyxy = results[0] conf = results[1] masks = results[2] # output viz image if the flag is set if write_viz: cv2.imwrite( str(out_sub_viz_dir / f"{image_path.stem}_viz.jpg"), viz_frame, ) trace_row = [ f"{sub_dir.name}.{video_ext}", image_path.stem, -1, -1, conf, ] if masks is not None or bbox_xyxy is not None: # method 1: find the largest contour # find min enclosing circle of mask # mask = (masks * 255).astype(np.uint8) # contours, _ = cv2.findContours( # mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE # ) # largest_contour = max(contours, key=cv2.contourArea) # (center_x, center_y), radius = cv2.minEnclosingCircle(largest_contour) # aorta_width = radius * 2 # method 2: use the height of the bbox as a measure of aorta width # because we observed that the width of the bbox is too large aorta_width = bbox_xyxy[3] - bbox_xyxy[1] # get physical unit w_mm_left, w_mm_right, w_mm_per_pixel = None, None, None if not no_extent: w_mm_left = extents[im_idx]["Width-Left(mm)"] w_mm_right = extents[im_idx]["Width-Right(mm)"] assert w_mm_right > 0 and w_mm_left < 0 w_mm_per_pixel = (w_mm_right - w_mm_left) / cv_width # update trace when aorta is found trace_row[2] = aorta_width trace_row[3] = aorta_width * w_mm_per_pixel if not no_extent else None # output viz image when aorta is found cv2.imwrite( str(out_sub_viz_dir / f"{image_path.stem}_viz.jpg"), viz_frame, ) # copy the raw image to the output directory shutil.copy(image_path, out_sub_viz_dir) if aorta_width > max_aorta_w: max_aorta_w = aorta_width max_aorta_viz = viz_frame.copy() max_aorta_im_path = image_path # Note: only need to calculate the center if using method 1 # max_center_x = center_x # max_center_y = center_y max_im_n = image_path.stem max_conf = conf logger.info( f"\tNew max aorta (pixels): {max_aorta_w:.2f}, conf: {max_conf:.2f}" ) # convert pixels to mm max_aorta_w_mm = ( max_aorta_w * w_mm_per_pixel if not no_extent else None ) # save trace to csv df = pd.DataFrame([trace_row], columns=trace_headers) df.to_csv( out_trace_csv_p, mode="a", header=not out_trace_csv_p.exists(), index=False, float_format="%.3f", ) if max_aorta_w > 0: logger.info(f"\tMax aorta (pixels): {max_aorta_w:.2f}") # copy the raw image to the output directory out_raw_p = out_dir / f"raw_{sub_dir.name}_{max_im_n}.jpg" shutil.copy(max_aorta_im_path, out_raw_p) # method 1 viz: draw enclosing circle on max_aorta_viz # plot circle on max_aorta_viz # cv2.circle( # max_aorta_viz, # (int(max_center_x), int(max_center_y)), # int(max_aorta_w / 2), # (0, 255, 0), # 2, # ) # region Save the image with extent # convert the BGR image to RGB image out_viz_p = out_dir / f"viz_{sub_dir.name}_{max_im_n}.jpg" max_aorta_viz_rgb = cv2.cvtColor(max_aorta_viz, cv2.COLOR_BGR2RGB) # Use matplotlib to save the image # Get the size of the image in inches dpi = plt.rcParams["figure.dpi"] # Get the default dpi value figsize = ( max_aorta_viz_rgb.shape[1] / dpi, max_aorta_viz_rgb.shape[0] / dpi, ) # width, height # Create a new figure with the same aspect ratio as the image fig = plt.figure(figsize=figsize) if not no_extent: # specify the extent of the image in the form [xmin, xmax, ymin, ymax] extent = [ extents[im_idx]["Width-Left(mm)"], extents[im_idx]["Width-Right(mm)"], extents[im_idx]["Depth-Bottom(mm)"], extents[im_idx]["Depth-Top(mm)"], ] plt.imshow(max_aorta_viz_rgb, extent=extent) plt.xlabel("Width [mm]") plt.ylabel("Depth [mm]") else: plt.imshow(max_aorta_viz_rgb) plt.savefig(str(out_viz_p)) plt.close(fig) # cv2.imwrite(str(out_viz_p), max_aorta_viz) # endregion else: logger.warning(f"\tNo aorta found in {sub_dir.name}") patient_info = sub_dir.name.split("-")[0] if has_patient_prefix else "" row = [ f"{sub_dir.name}.{video_ext}", max_aorta_w, max_aorta_w_mm, max_im_n, max_conf, ] if has_patient_prefix: row.insert(0, patient_info) # remove patient info from sub_dir name video_name = "-".join(sub_dir.name.split("-")[1:]) + f".{video_ext}" row[1] = video_name # export results to csv # If file does not exist, this will create it, otherwise it will append to the file df = pd.DataFrame([row], columns=headers) df.to_csv( out_csv_p, mode="a", header=not out_csv_p.exists(), index=False, float_format="%.3f", ) # join the results with ground truth to add the ground truth column # df_results = pd.read_csv(out_csv_p) # df_gt = pd.read_csv(gt_csv_path)[["video", gt_column_name]] # id & gt columns # df_gt_first = df_gt.drop_duplicates(subset="video", keep="first") # avoid new rows # df_merged = pd.merge(df_results, df_gt_first, on="video", how="left") # df_merged.to_csv(out_csv_p, header=True, index=False, float_format="%.3f") # # show stats # value_counts_with_nan = df_merged[gt_column_name].value_counts(dropna=False) # total = len(df_merged) # percentage = (value_counts_with_nan / total) * 100 # # Combine value counts and percentages into a DataFrame for better visualization # stats = pd.DataFrame({"Count": value_counts_with_nan, "Percentage": percentage}) # logger.info(stats) logger.info(f"Done! Results written to {out_csv_p}") @app.command(help="Copy source images to viz result folder") def copy_srcimg_to_vizdir( src_img_dir: Path = typer.Argument(..., help="Source Images root directory"), out_viz_dir: Path = typer.Argument(..., help="Target viz dirtectory"), ): vizs = list(Path(out_viz_dir).glob("**/*.jpg")) for viz in vizs: splits = viz.stem.split("_") ori_img = Path(src_img_dir) / splits[1] / f"{splits[2]}.jpg" shutil.copy(ori_img, Path(out_viz_dir) / f"{viz.stem}_src.jpg") if __name__ == "__main__": app()