|
|
|
|
|
|
|
|
|
@@ -110,7 +110,7 @@ class Loggers(): |
|
if clearml and 'clearml' in self.include: |
|
try: |
|
self.clearml = ClearmlLogger(self.opt, self.hyp) |
|
- except Exception: |
|
+ except Exception as e: |
|
self.clearml = None |
|
prefix = colorstr('ClearML: ') |
|
LOGGER.warning(f'{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging.' |
|
@@ -159,10 +159,11 @@ class Loggers(): |
|
paths = self.save_dir.glob('*labels*.jpg') # training labels |
|
if self.wandb: |
|
self.wandb.log({'Labels': [wandb.Image(str(x), caption=x.name) for x in paths]}) |
|
- # if self.clearml: |
|
- # pass # ClearML saves these images automatically using hooks |
|
if self.comet_logger: |
|
self.comet_logger.on_pretrain_routine_end(paths) |
|
+ if self.clearml: |
|
+ for path in paths: |
|
+ self.clearml.log_plot(title=path.stem, plot_path=path) |
|
|
|
def on_train_batch_end(self, model, ni, imgs, targets, paths, vals): |
|
log_dict = dict(zip(self.keys[:3], vals)) |
|
@@ -289,6 +290,8 @@ class Loggers(): |
|
self.wandb.finish_run() |
|
|
|
if self.clearml and not self.opt.evolve: |
|
+ self.clearml.log_summary(dict(zip(self.keys[3:10], results))) |
|
+ [self.clearml.log_plot(title=f.stem, plot_path=f) for f in files] |
|
self.clearml.task.update_output_model(model_path=str(best if best.exists() else last), |
|
name='Best Model', |
|
auto_delete_file=False) |
|
@@ -303,6 +306,8 @@ class Loggers(): |
|
self.wandb.wandb_run.config.update(params, allow_val_change=True) |
|
if self.comet_logger: |
|
self.comet_logger.on_params_update(params) |
|
+ if self.clearml: |
|
+ self.clearml.task.connect(params) |
|
|
|
|
|
class GenericLogger: |
|
@@ -315,7 +320,7 @@ class GenericLogger: |
|
include: loggers to include |
|
""" |
|
|
|
- def __init__(self, opt, console_logger, include=('tb', 'wandb')): |
|
+ def __init__(self, opt, console_logger, include=('tb', 'wandb', 'clearml')): |
|
# init default loggers |
|
self.save_dir = Path(opt.save_dir) |
|
self.include = include |
|
@@ -333,6 +338,22 @@ class GenericLogger: |
|
config=opt) |
|
else: |
|
self.wandb = None |
|
+ |
|
+ if clearml and 'clearml' in self.include: |
|
+ try: |
|
+ # Hyp is not available in classification mode |
|
+ if 'hyp' not in opt: |
|
+ hyp = {} |
|
+ else: |
|
+ hyp = opt.hyp |
|
+ self.clearml = ClearmlLogger(opt, hyp) |
|
+ except Exception: |
|
+ self.clearml = None |
|
+ prefix = colorstr('ClearML: ') |
|
+ LOGGER.warning(f'{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging.' |
|
+ f' See https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml#readme') |
|
+ else: |
|
+ self.clearml = None |
|
|
|
def log_metrics(self, metrics, epoch): |
|
# Log metrics dictionary to all loggers |
|
@@ -349,6 +370,9 @@ class GenericLogger: |
|
|
|
if self.wandb: |
|
self.wandb.log(metrics, step=epoch) |
|
+ |
|
+ if self.clearml: |
|
+ self.clearml.log_scalars(metrics, epoch) |
|
|
|
def log_images(self, files, name='Images', epoch=0): |
|
# Log images to all loggers |
|
@@ -361,6 +385,12 @@ class GenericLogger: |
|
|
|
if self.wandb: |
|
self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch) |
|
+ |
|
+ if self.clearml: |
|
+ if name == 'Results': |
|
+ [self.clearml.log_plot(f.stem, f) for f in files] |
|
+ else: |
|
+ self.clearml.log_debug_samples(files, title=name) |
|
|
|
def log_graph(self, model, imgsz=(640, 640)): |
|
# Log model graph to all loggers |
|
@@ -373,11 +403,17 @@ class GenericLogger: |
|
art = wandb.Artifact(name=f'run_{wandb.run.id}_model', type='model', metadata=metadata) |
|
art.add_file(str(model_path)) |
|
wandb.log_artifact(art) |
|
+ |
|
+ if self.clearml: |
|
+ self.clearml.log_model(model_path=model_path, model_name=model_path.stem) |
|
|
|
def update_params(self, params): |
|
# Update the parameters logged |
|
if self.wandb: |
|
wandb.run.config.update(params, allow_val_change=True) |
|
+ |
|
+ if self.clearml: |
|
+ self.clearml.task.connect(params) |
|
|
|
|
|
def log_tensorboard_graph(tb, model, imgsz=(640, 640)): |
|
|
|
|
|
|
|
|
|
@@ -3,6 +3,9 @@ import glob |
|
import re |
|
from pathlib import Path |
|
|
|
+import matplotlib.image as mpimg |
|
+import matplotlib.pyplot as plt |
|
+ |
|
import numpy as np |
|
import yaml |
|
|
|
@@ -79,13 +82,16 @@ class ClearmlLogger: |
|
# Maximum number of images to log to clearML per epoch |
|
self.max_imgs_to_log_per_epoch = 16 |
|
# Get the interval of epochs when bounding box images should be logged |
|
- self.bbox_interval = opt.bbox_interval |
|
+ # Only for detection task though! |
|
+ if 'bbox_interval' in opt: |
|
+ self.bbox_interval = opt.bbox_interval |
|
self.clearml = clearml |
|
self.task = None |
|
self.data_dict = None |
|
if self.clearml: |
|
self.task = Task.init( |
|
- project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5', |
|
+ # project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5', |
|
+ project_name=opt.project if not str(opt.project).startswith('runs/') else 'YOLOv5', |
|
task_name=opt.name if opt.name != 'exp' else 'Training', |
|
tags=['YOLOv5'], |
|
output_uri=True, |
|
@@ -112,6 +118,53 @@ class ClearmlLogger: |
|
# Set data to data_dict because wandb will crash without this information and opt is the best way |
|
# to give it to them |
|
opt.data = self.data_dict |
|
+ |
|
+ def log_scalars(self, metrics, epoch): |
|
+ """ |
|
+ Log scalars/metrics to ClearML |
|
+ arguments: |
|
+ metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...} |
|
+ epoch (int) iteration number for the current set of metrics |
|
+ """ |
|
+ for k, v in metrics.items(): |
|
+ title, series = k.split('/') |
|
+ self.task.get_logger().report_scalar(title, series, v, epoch) |
|
+ |
|
+ def log_model(self, model_path, model_name, epoch=0): |
|
+ """ |
|
+ Log model weights to ClearML |
|
+ arguments: |
|
+ model_path (PosixPath or str) Path to the model weights |
|
+ model_name (str) Name of the model visible in ClearML |
|
+ epoch (int) Iteration / epoch of the model weights |
|
+ """ |
|
+ self.task.update_output_model(model_path=str(model_path), |
|
+ name=model_name, |
|
+ iteration=epoch, |
|
+ auto_delete_file=False) |
|
+ |
|
+ def log_summary(self, metrics): |
|
+ """ |
|
+ Log final metrics to a summary table |
|
+ arguments: |
|
+ metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...} |
|
+ """ |
|
+ for k, v in metrics.items(): |
|
+ self.task.get_logger().report_single_value(k, v) |
|
+ |
|
+ def log_plot(self, title, plot_path): |
|
+ """ |
|
+ Log image as plot in the plot section of ClearML |
|
+ arguments: |
|
+ title (str) Title of the plot |
|
+ plot_path (PosixPath or str) Path to the saved image file |
|
+ """ |
|
+ img = mpimg.imread(plot_path) |
|
+ fig = plt.figure() |
|
+ ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks |
|
+ ax.imshow(img) |
|
+ |
|
+ self.task.get_logger().report_matplotlib_figure(title, "", figure=fig, report_interactive=False) |
|
|
|
def log_debug_samples(self, files, title='Debug Samples'): |
|
""" |
|
@@ -126,7 +179,8 @@ class ClearmlLogger: |
|
it = re.search(r'_batch(\d+)', f.name) |
|
iteration = int(it.groups()[0]) if it else 0 |
|
self.task.get_logger().report_image(title=title, |
|
- series=f.name.replace(it.group(), ''), |
|
+ # series=f.name.replace(it.group(), ''), |
|
+ series=f.name.replace(f"_batch{iteration}", ''), |
|
local_path=str(f), |
|
iteration=iteration) |
|
|
|
|