File size: 17,849 Bytes
2f3b6c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# Must import torch before onnxruntime, else could not create cuda context
# ref: https://github.com/microsoft/onnxruntime/issues/11092#issuecomment-1386840174
import torch, torchvision
import onnxruntime

from time import perf_counter
from openvino.runtime import Core, Layout, get_batch, AsyncInferQueue
from pathlib import Path
import yaml
import cv2
import numpy as np
import time
from plots import Annotator, process_mask, scale_boxes, scale_image, colors
from loguru import logger


def from_numpy(x):
    return torch.from_numpy(x) if isinstance(x, np.ndarray) else x


def yaml_load(file="data.yaml"):
    # Single-line safe yaml loading
    with open(file, errors="ignore") as f:
        return yaml.safe_load(f)


def load_metadata(f=Path("path/to/meta.yaml")):
    # Load metadata from meta.yaml if it exists
    if f.exists():
        d = yaml_load(f)
        return d["stride"], d["names"]  # assign stride, names
    return None, None


def letterbox(
    im,
    new_shape=(640, 640),
    color=(114, 114, 114),
    auto=True,
    scale_fill=False,
    scaleup=True,
    stride=32,
):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scale_fill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(
        im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
    )  # add border
    return im, ratio, (dw, dh)


def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def box_iou(box1, box2, eps=1e-7):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)

    # IoU = inter / (area1 + area2 - inter)
    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)


def non_max_suppression(
    prediction,
    conf_thres=0.25,
    iou_thres=0.45,
    classes=None,
    agnostic=False,
    multi_label=False,
    labels=(),
    max_det=300,
    nm=0,  # number of masks
    redundant=True,  # require redundant detections
):
    """Non-Maximum Suppression (NMS) on inference results to reject overlapping detections
    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """

    if isinstance(
        prediction, (list, tuple)
    ):  # YOLOv5 model in validation model, output = (inference_out, loss_out)
        prediction = prediction[0]  # select only inference output

    device = prediction.device
    mps = "mps" in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[2] - nm - 5  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Checks
    assert (
        0 <= conf_thres <= 1
    ), f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
    assert (
        0 <= iou_thres <= 1
    ), f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    max_wh = 7680  # (pixels) maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    mi = 5 + nc  # mask start index
    output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
            v[:, :4] = lb[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box/Mask
        box = xywh2xyxy(
            x[:, :4]
        )  # center_x, center_y, width, height) to (x1, y1, x2, y2)
        mask = x[:, mi:]  # zero columns if no masks

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)
        else:  # best class only
            conf, j = x[:, 5:mi].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        elif n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence
        else:
            x = x[x[:, 4].argsort(descending=True)]  # sort by confidence

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        if i.shape[0] > max_det:  # limit detections
            i = i[:max_det]
        if merge and (1 < n < 3e3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(
                1, keepdim=True
            )  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if mps:
            output[xi] = output[xi].to(device)

    return output


class Model:
    def __init__(
        self,
        model_path,
        imgsz=320,
        classes=None,
        device="CPU",
        plot_mask=False,
        conf_thres=0.7,
        n_jobs=1,
        is_async=False,
    ):
        # filter by class: classes=[0], or classes=[0, 2, 3]
        model_type = "onnx" if Path(model_path).suffix == ".onnx" else "openvino"
        assert Path(model_path).exists(), f"Model {model_path} not found"
        assert Path(model_path).suffix in (
            ".onnx",
            ".xml",
        ), "Model must be .onnx or .xml"
        self.model_type = model_type
        self.model_path = model_path
        self.imgsz = imgsz
        self.classes = classes
        self.plot_mask = plot_mask
        self.conf_thres = conf_thres

        # async settings
        self.n_jobs = n_jobs
        self.is_async = is_async
        self.completed_results = {}  # key: frame_id, value: inference results
        self.ori_cv_imgs = {}  # key: frame_id, value: original cv image
        self.prep_cv_imgs = {}  # key: frame_id, value: preprocessed cv image

        if self.model_type == "onnx":
            assert is_async is False, "Async mode is not supported for ONNX models"
            providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
            session = onnxruntime.InferenceSession(model_path, providers=providers)
            self.session = session
            output_names = [x.name for x in session.get_outputs()]
            self.output_names = output_names
            meta = session.get_modelmeta().custom_metadata_map  # metadata
            if "stride" in meta:
                stride, names = int(meta["stride"]), eval(meta["names"])
                self.stride = stride
                self.names = names
        elif self.model_type == "openvino":
            # load OpenVINO model
            assert Path(model_path).suffix == ".xml", "OpenVINO model must be .xml"
            ie = Core()
            weights = Path(model_path).with_suffix(".bin").as_posix()
            network = ie.read_model(model=model_path, weights=weights)
            if network.get_parameters()[0].get_layout().empty:
                network.get_parameters()[0].set_layout(Layout("NCHW"))
            batch_dim = get_batch(network)
            if batch_dim.is_static:
                batch_size = batch_dim.get_length()

            # To run inference on M1, we must export the IR model using "mo --use_legacy_frontend"
            # Otherwise, we would get the following error when compiling the model
            # https://github.com/openvinotoolkit/openvino/issues/12476#issuecomment-1222202804
            config = {}
            if n_jobs == "auto":
                config = {"PERFORMANCE_HINT": "THROUGHPUT"}
            self.executable_network = ie.compile_model(
                network, device_name=device, config=config
            )
            num_requests = self.executable_network.get_property(
                "OPTIMAL_NUMBER_OF_INFER_REQUESTS"
            )
            self.n_jobs = num_requests if n_jobs == "auto" else int(n_jobs)
            logger.info(f"Optimal number of infer requests should be: {num_requests}")
            self.stride, self.names = load_metadata(
                Path(weights).with_suffix(".yaml")
            )  # load metadata

            if is_async:
                logger.info(f"Using num of infer requests jobs: {n_jobs}")
                self.pipeline = AsyncInferQueue(self.executable_network, self.n_jobs)
                self.pipeline.set_callback(self.callback)

    def preprocess(self, cv_img, pt=False):
        im = letterbox(cv_img, self.imgsz, stride=self.stride, auto=pt)[
            0
        ]  # padded resize
        im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        im = np.ascontiguousarray(im)  # contiguous
        im = torch.from_numpy(im)
        im = im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        im = im.cpu().numpy()  # torch to numpy
        return im

    def postprocess(self, y, ori_cv_im, prep_im):
        y = [from_numpy(x) for x in y]
        pred, proto = y[0], y[-1]

        im0 = ori_cv_im

        # NMS
        iou_thres = 0.45
        agnostic_nms = False
        max_det = 1  # maximum detections per image, only 1 aorta is needed
        pred = non_max_suppression(
            pred,
            self.conf_thres,
            iou_thres,
            self.classes,
            agnostic_nms,
            max_det=max_det,
            nm=32,
        )

        # Process predictions
        line_thickness = 3
        annotator = Annotator(
            np.ascontiguousarray(im0),
            line_width=line_thickness,
            example=str(self.names),
        )
        i = 0
        det = pred[0]
        im = prep_im
        r_xyxy, r_conf, r_masks = None, None, None
        if len(pred[0]):
            masks = process_mask(
                proto[i],
                det[:, 6:],
                det[:, :4],
                (self.imgsz, self.imgsz),
                upsample=True,
            )  # HWC
            det[:, :4] = scale_boxes(
                (self.imgsz, self.imgsz), det[:, :4], im0.shape
            ).round()  # rescale boxes to im0 size

            # Mask plotting
            if self.plot_mask:
                annotator.masks(
                    masks,
                    colors=[colors(x, True) for x in det[:, 5]],
                    im_gpu=im[i],
                    alpha=0.1,
                )

            # Write results
            for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
                # Add bbox to image
                c = int(cls)  # integer class
                label = f"{self.names[c]} {conf:.2f}"
                annotator.box_label(xyxy, label, color=colors(c, True))
                r_xyxy = xyxy
                r_conf = conf
            r_xyxy = [i.int().numpy().item() for i in r_xyxy]
            r_conf = r_conf.numpy().item()
            r_masks = scale_image((self.imgsz, self.imgsz), masks.numpy()[0], im0.shape)
        return annotator.result(), (r_xyxy, r_conf, r_masks)

    def predict(self, cv_img):
        # return the annotated image and the bounding box
        result_cv_img, xyxy = None, None
        im = self.preprocess(cv_img)
        if self.model_type == "onnx":
            y = self.session.run(
                self.output_names, {self.session.get_inputs()[0].name: im}
            )
        elif self.model_type == "openvino":
            # OpenVINO model inference
            # Note: Please use FP32 model on M1, otherwise you will get many runtime errors
            # Very slow on M1, but works
            # start = perf_counter()
            y = list(self.executable_network([im]).values())
            # logger.info(f"OpenVINO inference time: {perf_counter() - start:.3f}s")
        result_cv_img, others = self.postprocess(y, cv_img, im)
        return result_cv_img, others

    def callback(self, request, userdata):
        # callback function for AsyncInferQueue
        outputs = request.outputs
        frame_id = userdata
        self.completed_results[frame_id] = [i.data for i in outputs]

    def predict_async(self, cv_img, frame_id):
        assert self.is_async, "Please set is_async=True when initializing the model"
        self.ori_cv_imgs[frame_id] = cv_img
        im = self.preprocess(cv_img)
        self.prep_cv_imgs[frame_id] = im

        # Note: The start_async function call is not required to be synchronized - it waits for any available job if the queue is busy/overloaded.
        # https://docs.openvino.ai/latest/openvino_docs_OV_UG_Python_API_exclusives.html#asyncinferqueue
        #
        # idle_id = self.pipeline.get_idle_request_id()
        # self.pipeline.start_async({idle_id: im}, frame_id)
        self.pipeline.start_async({0: im}, frame_id)

    def is_free_to_infer_async(self):
        """Returns True if any free request in the pool, otherwise False"""
        assert self.is_async, "Please set is_async=True when initializing the model"
        return self.pipeline.is_ready()

    def get_result(self, frame_id):
        """Returns the inference result for the given frame_id"""
        assert self.is_async, "Please set is_async=True when initializing the model"
        if frame_id in self.completed_results:
            y = self.completed_results.pop(frame_id)
            cv_img = self.ori_cv_imgs.pop(frame_id)
            im = self.prep_cv_imgs.pop(frame_id)
            result_cv_img, others = self.postprocess(y, cv_img, im)
            return result_cv_img, others
        return None


if __name__ == "__main__":
    m_p = "weights/yolov7seg-JH-v1.onnx"
    m_p = "weights/yolov5s-seg-MK-v1.onnx"
    m_p = "weights/best_openvino_model/best.xml"
    imgsz = 320
    # imgsz = 640
    model = Model(model_path=m_p, imgsz=imgsz)

    # inference an image using the loaded model
    # source = 'Tim_3-0-00-20.05.jpg'
    path = "data/Jimmy_2-0-00-04.63.jpg"
    assert Path(path).exists(), f"Input image {path} doesn't exist"

    # output path
    save_dir = "runs/predict"
    Path(save_dir).mkdir(parents=True, exist_ok=True)
    out_p = f"{save_dir}/{Path(path).stem}.jpg"

    # load image and preprocess
    im0 = cv2.imread(path)  # BGR
    result_cv_img, _ = model.predict(im0)
    if result_cv_img is not None:
        cv2.imwrite(out_p, result_cv_img)
        logger.info(f"Saved result to {out_p}")
    else:
        logger.error("No result, something went wrong")