File size: 25,759 Bytes
2f3b6c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
from pathlib import Path
import sys
import time
from time import perf_counter
import argparse
from loguru import logger
import os
from predict import Model
from datetime import datetime
from scipy import signal
import plotly.graph_objects as go
import numpy as np
import io
from PIL import Image
import cv2
from PySide6.QtCore import Qt, QThread, Signal, Slot
from PySide6.QtGui import QImage, QPixmap
from PySide6.QtWidgets import (
QApplication,
QHBoxLayout,
QLabel,
QMainWindow,
QPushButton,
QSizePolicy,
QVBoxLayout,
QWidget,
)
# for telemed
import matplotlib.pyplot as plt
import ctypes
from ctypes import *
# 720p
video_w = 1280
video_h = 720
# Copy from detection.py from telemed sample code
class Telemed:
def __init__(self):
# starting copy from the origianl main
# Setting ultrasound size
# w = 512
# h = 512
w = 640
h = 640
# Load dll
# usgfw2 = cdll.LoadLibrary('./usgfw2wrapper_C++_sources/usgfw2wrapper/x64/Release/usgfw2wrapper.dll')
usgfw2 = cdll.LoadLibrary("./usgfw2wrapper.dll")
# Ultrasound initialize
usgfw2.on_init()
ERR = usgfw2.init_ultrasound_usgfw2()
# Check probe
if ERR == 2:
logger.error("Main Usgfw2 library object not created")
usgfw2.Close_and_release()
sys.exit()
ERR = usgfw2.find_connected_probe()
if ERR != 101:
logger.error("Probe not detected")
usgfw2.Close_and_release()
sys.exit()
ERR = usgfw2.data_view_function()
if ERR < 0:
logger.error(
"Main ultrasound scanning object for selected probe not created"
)
sys.exit()
ERR = usgfw2.mixer_control_function(0, 0, w, h, 0, 0, 0)
if ERR < 0:
logger.error("B mixer control not returned")
sys.exit()
# Probe setting
res_X = ctypes.c_float(0.0)
res_Y = ctypes.c_float(0.0)
usgfw2.get_resolution(ctypes.pointer(res_X), ctypes.pointer(res_Y))
X_axis = np.zeros(shape=(w))
Y_axis = np.zeros(shape=(h))
if w % 2 == 0:
k = 0
for i in range(-w // 2, w // 2 + 1):
if i < 0:
j = i + 0.5
X_axis[k] = j * res_X.value
k = k + 1
else:
if i > 0:
j = i - 0.5
X_axis[k] = j * res_X.value
k = k + 1
else:
for i in range(-w // 2, w // 2):
X_axis[i + w / 2 + 1] = i * res_X.value
for i in range(0, h - 1):
Y_axis[i] = i * res_Y.value
old_resolution_x = res_X.value
old_resolution_y = res_X.value
# Image setting
p_array = (ctypes.c_uint * w * h * 4)()
fig, ax = plt.subplots()
usgfw2.return_pixel_values(ctypes.pointer(p_array))
buffer_as_numpy_array = np.frombuffer(p_array, np.uint)
reshaped_array = np.reshape(buffer_as_numpy_array, (w, h, 4))
img = ax.imshow(
reshaped_array[:, :, 0:3],
cmap="gray",
vmin=0,
vmax=255,
origin="lower",
extent=[np.amin(X_axis), np.amax(X_axis), np.amax(Y_axis), np.amin(Y_axis)],
)
# starting copy from the original __int__
self.w = w
self.h = h
(
self.usgfw2,
self.p_array,
self.res_X,
self.res_Y,
self.old_resolution_x,
self.old_resolution_y,
self.X_axis,
self.Y_axis,
self.img,
) = (
usgfw2,
p_array,
res_X,
res_Y,
old_resolution_x,
old_resolution_y,
X_axis,
Y_axis,
img,
)
# return the image from telemed
def imaging(self):
self.usgfw2.return_pixel_values(ctypes.pointer(self.p_array))
buffer_as_numpy_array = np.frombuffer(self.p_array, np.uint)
reshaped_array = np.reshape(buffer_as_numpy_array, (self.w, self.h, 4))
self.usgfw2.get_resolution(
ctypes.pointer(self.res_X), ctypes.pointer(self.res_Y)
)
if (
self.res_X.value != self.old_resolution_x
or self.res_Y.value != self.old_resolution_y
):
if self.w % 2 == 0:
k = 0
for i in range(-self.w // 2, self.w // 2 + 1):
if i < 0:
j = i + 0.5
self.X_axis[k] = j * self.res_X.value
k = k + 1
else:
if i > 0:
j = i - 0.5
self.X_axis[k] = j * self.res_X.value
k = k + 1
else:
for i in range(-self.w // 2, self.w // 2):
self.X_axis[i + self.w / 2 + 1] = i * self.res_X.value
for i in range(0, self.h - 1):
self.Y_axis[i] = i * self.res_Y.value
self.old_resolution_x = self.res_X.value
self.old_resolution_y = self.res_X.value
self.img.set_data(reshaped_array[:, :, 0:3])
self.img.set_extent(
[
np.amin(self.X_axis),
np.amax(self.X_axis),
np.amax(self.Y_axis),
np.amin(self.Y_axis),
]
)
# Transfer image format to cv2
img_array = np.asarray(self.img.get_array())
img_array = img_array[::-1, :, ::-1] # format same as plt image, RBG to BGR
return img_array
class Thread(QThread):
updateFrame = Signal(QImage)
def __init__(self, parent=None, args=None):
QThread.__init__(self, parent)
self.status = True
self.cap = True
self.args = args
# init telemed
if args.video is None:
self.telemed = Telemed()
# init model
is_async = (
True if self.args.jobs == "auto" or int(self.args.jobs) > 1 else False
)
self.model = Model(
model_path=self.args.model,
imgsz=self.args.img_size,
classes=self.args.classes,
device=self.args.device,
plot_mask=self.args.plot_mask,
conf_thres=self.args.conf_thres,
is_async=is_async,
n_jobs=self.args.jobs,
)
def get_stats_fig(self, aorta_widths, aorta_confs, fig_w, fig_h, ts):
title_font_size = 28
body_font_size = 24
img_quality = 100 * np.mean(aorta_confs)
avg_width = np.mean(aorta_widths)
max_width = np.max(aorta_widths)
suggestions = [
"N/A, within normal limit",
"Follow up in 5 years",
"Make an appointment as soon as possible",
]
s = None
if avg_width < 3:
s = suggestions[0]
elif avg_width < 5:
s = suggestions[1]
else:
s = suggestions[2]
# region smoothing: method 2, keep the peaks
# peaks = signal.find_peaks(aorta_widths, height=0.5, distance=40)
# new_y = []
# # smooth the values between the peaks
# start = 0
# end = peaks[0][0]
# new_y.extend(signal.savgol_filter(aorta_widths[start:end], end - start, 2))
# for i in range(len(peaks[0]) - 1):
# start = peaks[0][i] + 1
# end = peaks[0][i + 1]
# new_y.append(aorta_widths[peaks[0][i]]) # add peak value
# new_y.extend(
# signal.savgol_filter(
# aorta_widths[start:end],
# end - start, # window size used for filtering
# 2,
# )
# ) # order of fitted polynomial
# # add the last peak
# new_y.append(aorta_widths[peaks[0][-1]])
# start = peaks[0][-1] + 1
# end = len(aorta_widths)
# new_y.extend(signal.savgol_filter(aorta_widths[start:end], end - start, 2))
# endregion
# region smoothing: method 1, do not keep the peaks
window_size = 53
if len(aorta_widths) < window_size:
window_size = len(aorta_widths) - 1
new_y = signal.savgol_filter(aorta_widths, window_size, 3)
# endregion
x = np.arange(1, len(aorta_widths) + 1, dtype=int)
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=x, y=aorta_widths, mode="lines", line=dict(color="royalblue", width=1)
)
)
fig.add_trace(
go.Scatter(
x=x,
y=new_y,
mode="lines",
marker=dict(
size=3,
color="mediumpurple",
),
)
)
fig.update_layout(
autosize=False,
width=fig_w,
height=fig_h,
margin=dict(l=50, r=50, b=50, t=400, pad=4),
paper_bgcolor="LightSteelBlue",
showlegend=False,
)
fig.add_annotation(
text=f"max={max_width:.2f} cm",
x=np.argmax(aorta_widths),
y=np.max(aorta_widths),
xref="x",
yref="y",
showarrow=True,
font=dict(color="#ffffff"),
arrowhead=2,
arrowsize=1,
arrowwidth=2,
borderpad=4,
bgcolor="#ff7f0e",
opacity=0.8,
)
fig.add_annotation(
text=f"smoothed max={np.max(new_y):.2f} cm",
x=np.argmax(new_y),
y=np.max(new_y),
xref="x",
yref="y",
showarrow=True,
font=dict(color="#ffffff"),
arrowhead=2,
arrowsize=1,
arrowwidth=2,
ax=-100,
ay=-50,
borderpad=4,
bgcolor="#ff7f0e",
opacity=0.8,
)
fig.add_annotation(
text="<b>Report of Abdominal Aorta Examination</b>",
xref="paper",
yref="paper",
x=0.5,
y=2.3,
showarrow=False,
font=dict(size=title_font_size),
)
fig.add_annotation(
text=f"Image acquisition quality: {img_quality:.0f}%",
xref="paper",
yref="paper",
x=0,
y=2.0,
showarrow=False,
font=dict(size=body_font_size),
)
fig.add_annotation(
text=f"Aorta Maximal Width: {max_width:.2f} cm",
xref="paper",
yref="paper",
x=0,
y=1.8,
showarrow=False,
font=dict(size=body_font_size),
)
fig.add_annotation(
text=f"Aorta Maximal Width (Smoothed): {np.max(new_y):.2f} cm",
xref="paper",
yref="paper",
x=0,
y=1.6,
showarrow=False,
font=dict(size=body_font_size),
)
fig.add_annotation(
text=f"Average: {avg_width:.2f} cm",
xref="paper",
yref="paper",
x=0,
y=1.4,
showarrow=False,
font=dict(size=body_font_size),
)
fig.add_annotation(
text=f"Suggestion: {s}",
xref="paper",
yref="paper",
x=0,
y=1.2,
showarrow=False,
font=dict(size=body_font_size),
)
fig.add_annotation(
text=f"Generated at {ts}",
xref="paper",
yref="paper",
x=1,
y=1,
showarrow=False,
)
return fig
def run(self):
one_cm_in_pixels = 48 # hard-coded
aorta_cm_thre1 = 3
aorta_cm_thre2 = 5
black = (0, 0, 0)
white = (255, 255, 255)
red = (0, 0, 255)
green = (0, 255, 0)
aorta_widths_stats = [0, 0, 0] # three ranges: <3, 3-5, >5
aorta_widths = []
aorta_confs = []
expected_fps = None
frame_count = None
frame_w = None
frame_h = None
if self.args.video:
self.cap = cv2.VideoCapture(self.args.video)
expected_fps = self.cap.get(cv2.CAP_PROP_FPS)
secs_per_frame = 1 / expected_fps
frame_w, frame_h = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(
self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
)
frame_count = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
logger.info(f"Video source FPS: {expected_fps}")
logger.info(f"Milliseconds per frame: {secs_per_frame}")
logger.info(f"Video source resolution (WxH): {frame_w}x{frame_h}")
logger.info(f"Video source frame count: {frame_count}")
assert frame_count > 0, "No frame found"
n_read_frames = 0
next_frame_to_infer = 0
next_frame_to_show = 0
n_repeat_failure = 0
is_last_failed = False
start_time = perf_counter()
while self.status:
frame = None
# avoid infinite loop
if n_repeat_failure > 30:
break
# inference
color_frame, others, results, xyxy, conf = None, None, None, None, None
if self.model.is_async:
results = self.model.get_result(next_frame_to_show)
if results:
color_frame, others = results
xyxy, conf, _ = others
next_frame_to_show += 1
if self.model.is_async and self.model.is_free_to_infer_async():
if self.args.video:
ret, frame = self.cap.read()
if not ret:
n_repeat_failure += 1 if is_last_failed else 0
is_last_failed = True
continue
else:
# read the frame from telemed
# TODO(martin): Check read failure
frame = self.telemed.imaging()
n_read_frames += 1
self.model.predict_async(frame, next_frame_to_infer)
next_frame_to_infer += 1
elif not self.model.is_async:
if self.args.video:
ret, frame = self.cap.read()
if not ret:
n_repeat_failure += 1 if is_last_failed else 0
is_last_failed = True
continue
else:
# read the frame from telemed
# TODO(martin): Check read failure
frame = self.telemed.imaging()
n_read_frames += 1
results = self.model.predict(frame)
color_frame, others = results
xyxy, conf, _ = others # bbox and confidence
if results is None:
continue
is_last_failed = False
# check if aorta is within the ROI box, and draw the box
aorta_width_in_cm = 0
is_found = xyxy is not None
is_in_box = False
is_too_left, is_too_right = False, False
w, h = color_frame.shape[1], color_frame.shape[0]
box_w = int(w * 0.1)
box_h = int(h * 0.5)
box_top_left = (w // 2 - box_w // 2, h // 4)
box_bottom_right = (w // 2 + box_w // 2, h // 4 + box_h)
if xyxy is not None:
x1, y1, x2, y2 = xyxy
# check aorta width
aorta_width_in_cm = (x2 - x1) / one_cm_in_pixels
aorta_widths.append(aorta_width_in_cm)
aorta_confs.append(conf)
if aorta_width_in_cm < aorta_cm_thre1:
aorta_widths_stats[0] += 1
elif aorta_width_in_cm < aorta_cm_thre2:
aorta_widths_stats[1] += 1
else:
aorta_widths_stats[2] += 1
# check whether aorta is in the box
if (
x1 > box_top_left[0]
and x2 < box_bottom_right[0]
and y1 > box_top_left[1]
and y2 < box_bottom_right[1]
):
is_in_box = True
is_too_right = x2 > box_bottom_right[0]
is_too_left = x1 < box_top_left[0]
# plot ROI box with color status
box_color = green if is_in_box else red
color_frame = cv2.rectangle(
color_frame, box_top_left, box_bottom_right, box_color, 2
)
assert not (
is_too_left and is_too_right
), "Cannot be both too left and too right"
if is_too_left:
start_p = (box_top_left[0], int(h * 0.9))
end_p = (box_bottom_right[0], int(h * 0.9))
cv2.arrowedLine(color_frame, start_p, end_p, red, 3)
if is_too_right:
start_p = (box_bottom_right[0], int(h * 0.9))
end_p = (box_top_left[0], int(h * 0.9))
cv2.arrowedLine(color_frame, start_p, end_p, red, 3)
if is_in_box:
cv2.putText(
color_frame,
"GOOD",
(box_top_left[0], int(h * 0.9)),
cv2.FONT_HERSHEY_SIMPLEX,
1,
green,
3,
)
# plot aorta width
text = (
f"Aorta width: {aorta_width_in_cm:.2f} cm"
if is_found
else "Aorta width: N/A"
)
cv2.putText(
color_frame, text, (50, 90), cv2.FONT_HERSHEY_SIMPLEX, 1, white, 3
)
# region FPS
fps = None
if n_read_frames > 0:
fps = n_read_frames / (perf_counter() - start_time)
# Slow down the loop if FPS is too high
if self.args.sync:
while fps > expected_fps:
time.sleep(0.001)
fps = n_read_frames / (perf_counter() - start_time)
cv2.putText(
color_frame,
f"FPS: {fps:.2f}",
(50, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
white,
3,
)
# endregion
# Creating and scaling QImage
h, w, ch = color_frame.shape
img = QImage(color_frame.data, w, h, ch * w, QImage.Format_BGR888)
scaled_img = img.scaled(video_w, video_h, Qt.KeepAspectRatio)
# Emit signal
self.updateFrame.emit(scaled_img)
if self.args.video:
progress = 100 * n_read_frames / frame_count
fps_msg = f", FPS: {fps:.2f}" if fps is not None else ""
print(
f"Processed {n_read_frames}/{frame_count} ({progress:.2f}%) frames"
+ fps_msg,
end="\r" if n_read_frames < frame_count else os.linesep,
)
if n_read_frames >= frame_count:
logger.info("Finished processing video")
break
if self.args.video:
self.cap.release()
if not self.status:
logger.info("Stopped by user")
return
# draw a black image with frame width & height
# with some text in center indicating generating report
# it's just a dummy step to make demo more real
im = np.zeros((frame_h, frame_w, 3), np.uint8)
cv2.putText(
im,
"Generating report for you...",
(frame_w // 3, frame_h // 2),
cv2.FONT_HERSHEY_SIMPLEX,
1,
white,
3,
)
img = QImage(im.data, frame_w, frame_h, ch * w, QImage.Format_BGR888)
scaled_img = img.scaled(video_w, video_h, Qt.KeepAspectRatio)
self.updateFrame.emit(scaled_img)
time.sleep(3)
# plot aorta width tracing line chart
now_t = datetime.now()
ts1 = now_t.strftime("%Y%m%d_%H%M%S")
ts2 = now_t.strftime("%Y/%m/%d %I:%M:%S")
Path("runs").mkdir(parents=True, exist_ok=True)
# np.save("runs/aorta_widths.npy", aorta_widths)
fig_out_p = f"runs/aorta_report_{ts1}.jpeg"
fig = self.get_stats_fig(aorta_widths, aorta_confs, video_w, video_h, ts2)
# This may hang under Windows: https://github.com/plotly/Kaleido/issues/110
# The workaround is to install older kaleido version (see requirements.txt)
fig.write_image(fig_out_p)
logger.info(f"Saved aorta report: {fig_out_p}")
img_bytes = fig.to_image(format="jpg", width=video_w, height=video_h)
line_chart = np.array(Image.open(io.BytesIO(img_bytes)))
line_chart = cv2.cvtColor(line_chart, cv2.COLOR_RGB2BGR)
h, w, ch = line_chart.shape
img = QImage(line_chart.data, video_w, video_h, ch * w, QImage.Format_BGR888)
scaled_img = img.scaled(w, h, Qt.KeepAspectRatio)
# Emit signal
self.updateFrame.emit(scaled_img)
time.sleep(5)
# keep report open until user closes the window
while self.status and not self.args.exit_on_end:
time.sleep(0.1)
class Window(QMainWindow):
def __init__(self, args=None):
super().__init__()
# Title and dimensions
self.setWindowTitle("Demo")
self.setGeometry(0, 0, 800, 500)
# Create a label for the display camera
self.label = QLabel(self)
# self.label.setFixedSize(self.width(), self.height())
self.label.setFixedSize(video_w, video_h)
# Thread in charge of updating the image
self.th = Thread(self, args)
self.th.finished.connect(self.close)
self.th.updateFrame.connect(self.setImage)
# Buttons layout
buttons_layout = QHBoxLayout()
self.button1 = QPushButton("Start")
self.button2 = QPushButton("Stop/Close")
self.button1.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Expanding)
self.button2.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Expanding)
buttons_layout.addWidget(self.button2)
buttons_layout.addWidget(self.button1)
right_layout = QHBoxLayout()
# right_layout.addWidget(self.group_model, 1)
right_layout.addLayout(buttons_layout, 1)
# Main layout
layout = QVBoxLayout()
layout.addWidget(self.label)
layout.addLayout(right_layout)
# Central widget
widget = QWidget(self)
widget.setLayout(layout)
self.setCentralWidget(widget)
# Connections
self.button1.clicked.connect(self.start)
self.button2.clicked.connect(self.kill_thread)
self.button2.setEnabled(False)
if args.start_on_open:
# start thread
self.start()
@Slot()
def kill_thread(self):
logger.info("Finishing...")
self.th.status = False
time.sleep(1)
# Give time for the thread to finish
self.button2.setEnabled(False)
self.button1.setEnabled(True)
cv2.destroyAllWindows()
self.th.exit()
# Give time for the thread to finish
time.sleep(1)
@Slot()
def start(self):
logger.info("Starting...")
self.button2.setEnabled(True)
self.button1.setEnabled(False)
self.th.start()
logger.info("Thread started")
@Slot(QImage)
def setImage(self, image):
self.label.setPixmap(QPixmap.fromImage(image))
if __name__ == "__main__":
# get user inputs using argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--video",
type=str,
default=None,
help="path to video file, if None (default) would read from telemed",
)
parser.add_argument(
"--model",
type=str,
default="best_openvino_model/best.xml",
help="path to model file",
)
parser.add_argument("--img-size", type=int, default=640, help="image size")
parser.add_argument(
"--classes", nargs="+", type=int, default=[0], help="filter by class"
)
parser.add_argument("--device", type=str, default="CPU", help="device to use")
parser.add_argument("--sync", action="store_true", help="sync video FPS")
parser.add_argument("--plot-mask", action="store_true", help="plot mask")
parser.add_argument("--conf-thres", type=float, default=0.25, help="conf thresh")
parser.add_argument("--jobs", type=str, default=1, help="num of jobs, async if > 1")
parser.add_argument("--start-on-open", action="store_true", help="start on open")
parser.add_argument("--exit-on-end", action="store_true", help="exit if video ends")
args = parser.parse_args()
assert (
args.jobs == "auto" or int(args.jobs) > 0
), f"--jobs must be > 0 or auto, got {args.jobs}"
if args.video:
assert Path(args.video).exists(), f"Video file {args.video} not found"
assert Path(args.model).exists(), f"Model file {args.model} not found"
app = QApplication()
w = Window(args)
w.show()
sys.exit(app.exec())
|