add tiny random model
Browse files- __init__.py +0 -0
- config.json +43 -0
- create_model.py +10 -0
- merges.txt +807 -0
- modeling_gpt2.py +1548 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +5 -0
- tokenizer.json +1853 -0
- tokenizer_config.json +10 -0
- vocab.json +1 -0
__init__.py
ADDED
File without changes
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "hf-internal-testing/tiny-random-gpt2",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPT2CustomLMHeadModel"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"attn_pdrop": 0.1,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoModelForCausalLM": "modeling_gpt2.GPT2CustomLMHeadModel"
|
11 |
+
},
|
12 |
+
"bos_token_id": 98,
|
13 |
+
"embd_pdrop": 0.1,
|
14 |
+
"eos_token_id": 98,
|
15 |
+
"gradient_checkpointing": false,
|
16 |
+
"hidden_act": "gelu",
|
17 |
+
"hidden_dropout_prob": 0.1,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 37,
|
20 |
+
"layer_norm_epsilon": 1e-05,
|
21 |
+
"model_type": "gpt2",
|
22 |
+
"n_ctx": 512,
|
23 |
+
"n_embd": 32,
|
24 |
+
"n_head": 4,
|
25 |
+
"n_inner": null,
|
26 |
+
"n_layer": 5,
|
27 |
+
"n_positions": 512,
|
28 |
+
"pad_token_id": 98,
|
29 |
+
"reorder_and_upcast_attn": false,
|
30 |
+
"resid_pdrop": 0.1,
|
31 |
+
"scale_attn_by_inverse_layer_idx": false,
|
32 |
+
"scale_attn_weights": true,
|
33 |
+
"summary_activation": null,
|
34 |
+
"summary_first_dropout": 0.1,
|
35 |
+
"summary_proj_to_labels": true,
|
36 |
+
"summary_type": "cls_index",
|
37 |
+
"summary_use_proj": true,
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.25.1",
|
40 |
+
"type_vocab_size": 16,
|
41 |
+
"use_cache": true,
|
42 |
+
"vocab_size": 1000
|
43 |
+
}
|
create_model.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig
|
2 |
+
|
3 |
+
from modeling.modeling_gpt2 import GPT2CustomLMHeadModel
|
4 |
+
|
5 |
+
cfg = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-gpt2")
|
6 |
+
|
7 |
+
GPT2CustomLMHeadModel.register_for_auto_class("AutoModelForCausalLM")
|
8 |
+
|
9 |
+
model = GPT2CustomLMHeadModel(cfg)
|
10 |
+
model.save_pretrained("/home/fxmarty/hf_internship/tiny-testing-gpt2-remote-code")
|
merges.txt
ADDED
@@ -0,0 +1,807 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#version: 0.2 - Trained by `huggingface/tokenizers`
|
2 |
+
Ġ t
|
3 |
+
h e
|
4 |
+
Ġ a
|
5 |
+
i n
|
6 |
+
Ġt he
|
7 |
+
e r
|
8 |
+
o n
|
9 |
+
Ġ ,
|
10 |
+
r e
|
11 |
+
Ġ s
|
12 |
+
e d
|
13 |
+
Ġ o
|
14 |
+
Ġ w
|
15 |
+
n d
|
16 |
+
a t
|
17 |
+
Ġ .
|
18 |
+
o r
|
19 |
+
i t
|
20 |
+
Ġ c
|
21 |
+
e n
|
22 |
+
Ġ f
|
23 |
+
i s
|
24 |
+
e s
|
25 |
+
a r
|
26 |
+
Ġo f
|
27 |
+
Ġ b
|
28 |
+
a n
|
29 |
+
Ġ in
|
30 |
+
a l
|
31 |
+
in g
|
32 |
+
Ġ p
|
33 |
+
Ġa nd
|
34 |
+
a s
|
35 |
+
Ġt o
|
36 |
+
r o
|
37 |
+
i c
|
38 |
+
Ġ m
|
39 |
+
Ġ d
|
40 |
+
Ġ h
|
41 |
+
i on
|
42 |
+
l e
|
43 |
+
o u
|
44 |
+
Ġ T
|
45 |
+
Ġ re
|
46 |
+
Ġ =
|
47 |
+
Ġ "
|
48 |
+
Ġ A
|
49 |
+
Ġ S
|
50 |
+
en t
|
51 |
+
i l
|
52 |
+
Ġt h
|
53 |
+
Ġ 1
|
54 |
+
s t
|
55 |
+
Ġ C
|
56 |
+
e l
|
57 |
+
o m
|
58 |
+
Ġ l
|
59 |
+
a m
|
60 |
+
Ġ Ċ
|
61 |
+
Ġ e
|
62 |
+
Ġ n
|
63 |
+
Ġ @
|
64 |
+
a d
|
65 |
+
a c
|
66 |
+
Ġw as
|
67 |
+
Ġ M
|
68 |
+
u r
|
69 |
+
ĠT he
|
70 |
+
e c
|
71 |
+
Ġ on
|
72 |
+
l y
|
73 |
+
Ġ B
|
74 |
+
Ġ I
|
75 |
+
Ġ g
|
76 |
+
Ġ '
|
77 |
+
e t
|
78 |
+
o l
|
79 |
+
i d
|
80 |
+
i v
|
81 |
+
i m
|
82 |
+
Ġf or
|
83 |
+
i r
|
84 |
+
- @
|
85 |
+
Ġ@ -@
|
86 |
+
i g
|
87 |
+
o t
|
88 |
+
t er
|
89 |
+
Ġa s
|
90 |
+
Ġ H
|
91 |
+
u s
|
92 |
+
o w
|
93 |
+
Ġs t
|
94 |
+
u t
|
95 |
+
it h
|
96 |
+
a y
|
97 |
+
Ġ 2
|
98 |
+
Ġ P
|
99 |
+
at ion
|
100 |
+
v er
|
101 |
+
Ġb e
|
102 |
+
he r
|
103 |
+
Ġth at
|
104 |
+
Ġw ith
|
105 |
+
Ġ R
|
106 |
+
c e
|
107 |
+
t h
|
108 |
+
Ġ D
|
109 |
+
Ġ is
|
110 |
+
u n
|
111 |
+
e m
|
112 |
+
Ġ F
|
113 |
+
Ġw h
|
114 |
+
u l
|
115 |
+
Ġb y
|
116 |
+
Ġa l
|
117 |
+
c h
|
118 |
+
Ġ )
|
119 |
+
Ġ (
|
120 |
+
Ġ W
|
121 |
+
Ġc on
|
122 |
+
r a
|
123 |
+
Ġ G
|
124 |
+
o s
|
125 |
+
Ġ L
|
126 |
+
Ġ N
|
127 |
+
Ġa t
|
128 |
+
er s
|
129 |
+
c t
|
130 |
+
Ġ it
|
131 |
+
Ġ1 9
|
132 |
+
ro m
|
133 |
+
a nd
|
134 |
+
Ġa n
|
135 |
+
u m
|
136 |
+
es t
|
137 |
+
Ġ J
|
138 |
+
a g
|
139 |
+
Ġ he
|
140 |
+
0 0
|
141 |
+
is t
|
142 |
+
a in
|
143 |
+
o d
|
144 |
+
a v
|
145 |
+
r i
|
146 |
+
Ġ E
|
147 |
+
Ġ O
|
148 |
+
Ġf rom
|
149 |
+
Ġc om
|
150 |
+
Ġh is
|
151 |
+
o p
|
152 |
+
Ġp ro
|
153 |
+
re s
|
154 |
+
i es
|
155 |
+
i f
|
156 |
+
Ġ v
|
157 |
+
or t
|
158 |
+
er e
|
159 |
+
il l
|
160 |
+
l d
|
161 |
+
Ġd e
|
162 |
+
p p
|
163 |
+
Ġs u
|
164 |
+
o re
|
165 |
+
ĠI n
|
166 |
+
Ġ r
|
167 |
+
Ġs e
|
168 |
+
Ġw ere
|
169 |
+
e w
|
170 |
+
on g
|
171 |
+
ig h
|
172 |
+
ar d
|
173 |
+
at e
|
174 |
+
al l
|
175 |
+
ar t
|
176 |
+
a k
|
177 |
+
ic h
|
178 |
+
Ġc h
|
179 |
+
Ġo r
|
180 |
+
a b
|
181 |
+
an t
|
182 |
+
u d
|
183 |
+
o c
|
184 |
+
b er
|
185 |
+
Ġe x
|
186 |
+
g h
|
187 |
+
it y
|
188 |
+
at ed
|
189 |
+
p t
|
190 |
+
es s
|
191 |
+
e ar
|
192 |
+
Ġ K
|
193 |
+
Ġp l
|
194 |
+
am e
|
195 |
+
q u
|
196 |
+
iv e
|
197 |
+
ro u
|
198 |
+
Ġa re
|
199 |
+
Ġ â
|
200 |
+
Ġs h
|
201 |
+
Ġ k
|
202 |
+
ac k
|
203 |
+
ec t
|
204 |
+
Ġâ Ģ
|
205 |
+
Ġ U
|
206 |
+
Ġh ad
|
207 |
+
s e
|
208 |
+
Ġwh ich
|
209 |
+
re d
|
210 |
+
o v
|
211 |
+
ĠS t
|
212 |
+
as t
|
213 |
+
Ġs p
|
214 |
+
i an
|
215 |
+
Ġ y
|
216 |
+
m ent
|
217 |
+
Ġ le
|
218 |
+
Ġn ot
|
219 |
+
g e
|
220 |
+
or d
|
221 |
+
r it
|
222 |
+
i p
|
223 |
+
in e
|
224 |
+
el l
|
225 |
+
al ly
|
226 |
+
ou r
|
227 |
+
o st
|
228 |
+
igh t
|
229 |
+
t her
|
230 |
+
a p
|
231 |
+
Ġ u
|
232 |
+
is h
|
233 |
+
ĠC h
|
234 |
+
ou n
|
235 |
+
i a
|
236 |
+
Ġ 3
|
237 |
+
av e
|
238 |
+
ar y
|
239 |
+
u st
|
240 |
+
o g
|
241 |
+
Ġ2 00
|
242 |
+
Ġ un
|
243 |
+
ou s
|
244 |
+
ir st
|
245 |
+
Ġ V
|
246 |
+
c c
|
247 |
+
Ġin c
|
248 |
+
Ġ ;
|
249 |
+
Ġcom p
|
250 |
+
r u
|
251 |
+
ion s
|
252 |
+
Ġthe ir
|
253 |
+
Ġb ut
|
254 |
+
id e
|
255 |
+
u re
|
256 |
+
s o
|
257 |
+
Ġcon t
|
258 |
+
Ġin t
|
259 |
+
f ter
|
260 |
+
ic al
|
261 |
+
i al
|
262 |
+
Ġa r
|
263 |
+
Ġf irst
|
264 |
+
ou ld
|
265 |
+
Ġit s
|
266 |
+
he d
|
267 |
+
ĠâĢ ĵ
|
268 |
+
Ġw he
|
269 |
+
w o
|
270 |
+
ou t
|
271 |
+
u b
|
272 |
+
Ġ2 0
|
273 |
+
f f
|
274 |
+
Ġ :
|
275 |
+
u e
|
276 |
+
Ġ her
|
277 |
+
ow n
|
278 |
+
o k
|
279 |
+
Ġal so
|
280 |
+
Ġc l
|
281 |
+
p er
|
282 |
+
ig n
|
283 |
+
at er
|
284 |
+
r an
|
285 |
+
or m
|
286 |
+
i e
|
287 |
+
om e
|
288 |
+
or k
|
289 |
+
as s
|
290 |
+
i re
|
291 |
+
e nd
|
292 |
+
Ġre s
|
293 |
+
Ġa b
|
294 |
+
Ġa d
|
295 |
+
Ġ us
|
296 |
+
r y
|
297 |
+
Ġre c
|
298 |
+
Ġh ave
|
299 |
+
ag e
|
300 |
+
ĠH e
|
301 |
+
Ġ 4
|
302 |
+
Ġ ro
|
303 |
+
m er
|
304 |
+
Ġon e
|
305 |
+
on d
|
306 |
+
l ow
|
307 |
+
Ġh as
|
308 |
+
ĠT h
|
309 |
+
d u
|
310 |
+
Ġ 5
|
311 |
+
Ġp er
|
312 |
+
Ġbe en
|
313 |
+
im e
|
314 |
+
Ġt wo
|
315 |
+
en ce
|
316 |
+
l and
|
317 |
+
Ġ1 8
|
318 |
+
. @
|
319 |
+
Ġ@ .@
|
320 |
+
ul t
|
321 |
+
re e
|
322 |
+
ou gh
|
323 |
+
i le
|
324 |
+
Ġwh o
|
325 |
+
ĠA l
|
326 |
+
Ġs c
|
327 |
+
ur ing
|
328 |
+
p l
|
329 |
+
or y
|
330 |
+
it ion
|
331 |
+
r ic
|
332 |
+
ation s
|
333 |
+
Ġd is
|
334 |
+
Ġth is
|
335 |
+
Ġb ec
|
336 |
+
Ġa pp
|
337 |
+
i z
|
338 |
+
ĠI t
|
339 |
+
a re
|
340 |
+
ac h
|
341 |
+
l ud
|
342 |
+
ad e
|
343 |
+
Ġpl ay
|
344 |
+
Ġ j
|
345 |
+
Ġm an
|
346 |
+
ac t
|
347 |
+
el y
|
348 |
+
Ġp art
|
349 |
+
Ġd es
|
350 |
+
Ġa g
|
351 |
+
Ġthe y
|
352 |
+
Ġy ear
|
353 |
+
oun t
|
354 |
+
Ġ20 1
|
355 |
+
Ġo ver
|
356 |
+
Ġo ther
|
357 |
+
ou nd
|
358 |
+
Ġa fter
|
359 |
+
i b
|
360 |
+
o ver
|
361 |
+
Ġs er
|
362 |
+
Ġ en
|
363 |
+
Ġof f
|
364 |
+
Ġ im
|
365 |
+
ct ion
|
366 |
+
Ġ Y
|
367 |
+
k e
|
368 |
+
it e
|
369 |
+
, @
|
370 |
+
Ġ@ ,@
|
371 |
+
t e
|
372 |
+
ur n
|
373 |
+
Ġinc lud
|
374 |
+
res s
|
375 |
+
an ce
|
376 |
+
an g
|
377 |
+
Ġat t
|
378 |
+
ic e
|
379 |
+
ac e
|
380 |
+
ar k
|
381 |
+
Ġo ut
|
382 |
+
w n
|
383 |
+
p h
|
384 |
+
em ber
|
385 |
+
Ġp re
|
386 |
+
Ġu p
|
387 |
+
en s
|
388 |
+
m an
|
389 |
+
Ġe v
|
390 |
+
Ġt ime
|
391 |
+
nd er
|
392 |
+
rou gh
|
393 |
+
c ed
|
394 |
+
Ġf in
|
395 |
+
Ġint o
|
396 |
+
on e
|
397 |
+
p ort
|
398 |
+
rou nd
|
399 |
+
w e
|
400 |
+
re n
|
401 |
+
l es
|
402 |
+
in t
|
403 |
+
ĠO n
|
404 |
+
v el
|
405 |
+
Ġcom m
|
406 |
+
Ġs he
|
407 |
+
as on
|
408 |
+
am p
|
409 |
+
Ġt e
|
410 |
+
Ġw ould
|
411 |
+
w ard
|
412 |
+
Ġm ore
|
413 |
+
Ġ 6
|
414 |
+
i ed
|
415 |
+
os e
|
416 |
+
ri b
|
417 |
+
ĠU n
|
418 |
+
Ġal l
|
419 |
+
ing s
|
420 |
+
ter n
|
421 |
+
c es
|
422 |
+
ab le
|
423 |
+
Ġw e
|
424 |
+
it ed
|
425 |
+
e ver
|
426 |
+
ent s
|
427 |
+
Ġh im
|
428 |
+
as ed
|
429 |
+
or s
|
430 |
+
o y
|
431 |
+
o od
|
432 |
+
Ġc ent
|
433 |
+
i x
|
434 |
+
as e
|
435 |
+
il d
|
436 |
+
ĠA n
|
437 |
+
Ġ 7
|
438 |
+
Ġw ork
|
439 |
+
at es
|
440 |
+
i ous
|
441 |
+
at h
|
442 |
+
Ġp o
|
443 |
+
ro p
|
444 |
+
ol d
|
445 |
+
al s
|
446 |
+
is s
|
447 |
+
e y
|
448 |
+
ic t
|
449 |
+
Ġf e
|
450 |
+
Ġthe m
|
451 |
+
g an
|
452 |
+
Ġs ec
|
453 |
+
Ġb et
|
454 |
+
Ġwhe n
|
455 |
+
Ġs ong
|
456 |
+
Ġre m
|
457 |
+
e p
|
458 |
+
f orm
|
459 |
+
a il
|
460 |
+
f er
|
461 |
+
Ġe ar
|
462 |
+
ub l
|
463 |
+
a w
|
464 |
+
Ġk n
|
465 |
+
ak e
|
466 |
+
a us
|
467 |
+
Ġm ost
|
468 |
+
Ġcon s
|
469 |
+
Ġd uring
|
470 |
+
ĠA s
|
471 |
+
or th
|
472 |
+
Ġn ew
|
473 |
+
er ed
|
474 |
+
il m
|
475 |
+
v ed
|
476 |
+
at t
|
477 |
+
Ġon ly
|
478 |
+
Ġ 9
|
479 |
+
Ġd ec
|
480 |
+
Ġ 8
|
481 |
+
ic k
|
482 |
+
Ġg ame
|
483 |
+
on s
|
484 |
+
u g
|
485 |
+
Ġt r
|
486 |
+
f t
|
487 |
+
ot h
|
488 |
+
o ok
|
489 |
+
ĠM ar
|
490 |
+
re at
|
491 |
+
w ay
|
492 |
+
Ġc an
|
493 |
+
ol low
|
494 |
+
ou th
|
495 |
+
we en
|
496 |
+
ĠE n
|
497 |
+
Ġ19 9
|
498 |
+
ter s
|
499 |
+
Ġre l
|
500 |
+
in d
|
501 |
+
Ġab out
|
502 |
+
Ġse ason
|
503 |
+
Ġag ain
|
504 |
+
r al
|
505 |
+
Ġth ree
|
506 |
+
ation al
|
507 |
+
Ġu nder
|
508 |
+
ul ar
|
509 |
+
Ġm e
|
510 |
+
Ġth an
|
511 |
+
ĠC om
|
512 |
+
ĠA r
|
513 |
+
h ip
|
514 |
+
o b
|
515 |
+
Ġn e
|
516 |
+
Ġbet ween
|
517 |
+
Ġf l
|
518 |
+
h n
|
519 |
+
v e
|
520 |
+
Ġch ar
|
521 |
+
Ġc ol
|
522 |
+
Ġrec ord
|
523 |
+
i ew
|
524 |
+
r on
|
525 |
+
f ore
|
526 |
+
Ġth rough
|
527 |
+
is ion
|
528 |
+
or n
|
529 |
+
Ġ 00
|
530 |
+
oc k
|
531 |
+
Ġ ver
|
532 |
+
Ġl ater
|
533 |
+
Ġn um
|
534 |
+
Ġe nd
|
535 |
+
ol og
|
536 |
+
am es
|
537 |
+
Ġp os
|
538 |
+
Ġw rit
|
539 |
+
Ġpro du
|
540 |
+
Ġwh ile
|
541 |
+
Ġa ct
|
542 |
+
Ġre le
|
543 |
+
Ġf ilm
|
544 |
+
is hed
|
545 |
+
Ġp r
|
546 |
+
an s
|
547 |
+
Ġre g
|
548 |
+
Ġfor m
|
549 |
+
Ġas s
|
550 |
+
ĠS e
|
551 |
+
ur y
|
552 |
+
t ed
|
553 |
+
t s
|
554 |
+
Ġm ade
|
555 |
+
Ġsu b
|
556 |
+
Ġp e
|
557 |
+
Ġs o
|
558 |
+
or ld
|
559 |
+
Ġre t
|
560 |
+
ĠN ew
|
561 |
+
Ġsp ec
|
562 |
+
Ġa cc
|
563 |
+
Ġ qu
|
564 |
+
Ġwhe re
|
565 |
+
en er
|
566 |
+
Ġm ov
|
567 |
+
he s
|
568 |
+
mer ic
|
569 |
+
at ing
|
570 |
+
Ġin ter
|
571 |
+
ĠL e
|
572 |
+
ĠA meric
|
573 |
+
Ġ ra
|
574 |
+
Ġs ome
|
575 |
+
Ġc o
|
576 |
+
Ġl ar
|
577 |
+
Ġb u
|
578 |
+
Ġde f
|
579 |
+
b um
|
580 |
+
Ġa c
|
581 |
+
Ġm us
|
582 |
+
Ġf ollow
|
583 |
+
ĠA t
|
584 |
+
in s
|
585 |
+
iv ed
|
586 |
+
if ic
|
587 |
+
u al
|
588 |
+
Ġa m
|
589 |
+
Ġsu ch
|
590 |
+
Ġsec ond
|
591 |
+
i ke
|
592 |
+
Ġf our
|
593 |
+
Ġin d
|
594 |
+
an n
|
595 |
+
he n
|
596 |
+
Ġus ed
|
597 |
+
ĠR e
|
598 |
+
ic s
|
599 |
+
le ct
|
600 |
+
Ġd ay
|
601 |
+
i el
|
602 |
+
il y
|
603 |
+
ĠTh is
|
604 |
+
Ġ 0
|
605 |
+
Ġp ubl
|
606 |
+
Ġc all
|
607 |
+
ĠJ o
|
608 |
+
l l
|
609 |
+
Ġal bum
|
610 |
+
Ġ00 0
|
611 |
+
ran s
|
612 |
+
Ġd o
|
613 |
+
an y
|
614 |
+
Ġbe fore
|
615 |
+
ro s
|
616 |
+
ĠS h
|
617 |
+
Ġs y
|
618 |
+
a id
|
619 |
+
ĠEn g
|
620 |
+
Ġbe ing
|
621 |
+
Ġ1 0
|
622 |
+
u c
|
623 |
+
Ġe p
|
624 |
+
Ġsu pp
|
625 |
+
Ġthe re
|
626 |
+
Ġyear s
|
627 |
+
ar s
|
628 |
+
ow ever
|
629 |
+
Ġ ent
|
630 |
+
if e
|
631 |
+
Ġh igh
|
632 |
+
Ġf ound
|
633 |
+
ir d
|
634 |
+
Ġn o
|
635 |
+
Ġs et
|
636 |
+
in es
|
637 |
+
iv er
|
638 |
+
i o
|
639 |
+
ot her
|
640 |
+
j ect
|
641 |
+
Ġs ur
|
642 |
+
a j
|
643 |
+
t en
|
644 |
+
Ġt ra
|
645 |
+
Ġ1 2
|
646 |
+
is ed
|
647 |
+
it ies
|
648 |
+
vel op
|
649 |
+
Ġb l
|
650 |
+
al e
|
651 |
+
Ġser ies
|
652 |
+
Ġl oc
|
653 |
+
Ġnum ber
|
654 |
+
Ġp res
|
655 |
+
an e
|
656 |
+
aus e
|
657 |
+
od e
|
658 |
+
e k
|
659 |
+
t on
|
660 |
+
ĠS c
|
661 |
+
i er
|
662 |
+
is e
|
663 |
+
Ġse ver
|
664 |
+
in ce
|
665 |
+
Ġb oth
|
666 |
+
an k
|
667 |
+
ro w
|
668 |
+
ire ct
|
669 |
+
s on
|
670 |
+
Ġthe n
|
671 |
+
ĠB rit
|
672 |
+
i et
|
673 |
+
Ġ1 6
|
674 |
+
Ġep is
|
675 |
+
Ġinclud ing
|
676 |
+
it s
|
677 |
+
ig in
|
678 |
+
p r
|
679 |
+
Ġ /
|
680 |
+
Ġagain st
|
681 |
+
Ġw ell
|
682 |
+
Ġbec ame
|
683 |
+
Ġex p
|
684 |
+
Ġkn own
|
685 |
+
Ġt rans
|
686 |
+
Ġchar ac
|
687 |
+
ĠâĢ Ķ
|
688 |
+
r am
|
689 |
+
Ġb ack
|
690 |
+
Ġad d
|
691 |
+
Ġp op
|
692 |
+
Ġg o
|
693 |
+
ur ch
|
694 |
+
Ġdes c
|
695 |
+
Ġs ing
|
696 |
+
iel d
|
697 |
+
Ġper form
|
698 |
+
ain ed
|
699 |
+
Ġre ce
|
700 |
+
id ent
|
701 |
+
Ġe m
|
702 |
+
er t
|
703 |
+
u res
|
704 |
+
Ġin v
|
705 |
+
Ġde p
|
706 |
+
Ġ19 8
|
707 |
+
a ir
|
708 |
+
er n
|
709 |
+
at her
|
710 |
+
f ul
|
711 |
+
Ġ Z
|
712 |
+
Ġm on
|
713 |
+
Ġman y
|
714 |
+
Ġm ain
|
715 |
+
Ġst ud
|
716 |
+
Ġl ong
|
717 |
+
in n
|
718 |
+
th ough
|
719 |
+
u p
|
720 |
+
o ol
|
721 |
+
ĠUn ited
|
722 |
+
l ed
|
723 |
+
em ent
|
724 |
+
Ġ1 5
|
725 |
+
ow er
|
726 |
+
ĠJo hn
|
727 |
+
Ġo p
|
728 |
+
Ġ1 1
|
729 |
+
in ed
|
730 |
+
Ġm et
|
731 |
+
o ber
|
732 |
+
le y
|
733 |
+
Ġ1 7
|
734 |
+
Ġcent ury
|
735 |
+
Ġte am
|
736 |
+
Ġ est
|
737 |
+
ĠA fter
|
738 |
+
y l
|
739 |
+
Ġm in
|
740 |
+
u ch
|
741 |
+
ut e
|
742 |
+
Ġde velop
|
743 |
+
ĠS he
|
744 |
+
i am
|
745 |
+
Ġsh ow
|
746 |
+
el f
|
747 |
+
Ġre p
|
748 |
+
Ġcon c
|
749 |
+
at ive
|
750 |
+
Ġc re
|
751 |
+
over n
|
752 |
+
a red
|
753 |
+
Ġ19 4
|
754 |
+
Ġor igin
|
755 |
+
Ġs m
|
756 |
+
iv ers
|
757 |
+
a z
|
758 |
+
Ġle ad
|
759 |
+
Ġsever al
|
760 |
+
a h
|
761 |
+
Ġo b
|
762 |
+
Ġre v
|
763 |
+
Ġm ill
|
764 |
+
er m
|
765 |
+
u ally
|
766 |
+
o ot
|
767 |
+
Ġbe gan
|
768 |
+
Ġ19 6
|
769 |
+
i red
|
770 |
+
Ġd if
|
771 |
+
Ġcont in
|
772 |
+
Ġs ign
|
773 |
+
i k
|
774 |
+
ĠI nd
|
775 |
+
ment s
|
776 |
+
iz ed
|
777 |
+
Ġ19 7
|
778 |
+
Ġd irect
|
779 |
+
a u
|
780 |
+
Ġex t
|
781 |
+
ros s
|
782 |
+
em b
|
783 |
+
d er
|
784 |
+
Ġp ol
|
785 |
+
Ġm ay
|
786 |
+
a pt
|
787 |
+
el s
|
788 |
+
ĠW h
|
789 |
+
Ġcomp le
|
790 |
+
Ġar t
|
791 |
+
ĠB r
|
792 |
+
ĠI s
|
793 |
+
un e
|
794 |
+
t il
|
795 |
+
Ġc rit
|
796 |
+
Ġh ist
|
797 |
+
Ġear ly
|
798 |
+
Ġc ould
|
799 |
+
ĠC on
|
800 |
+
Ġd id
|
801 |
+
Ġb el
|
802 |
+
Ġcall ed
|
803 |
+
u ed
|
804 |
+
Ġn ear
|
805 |
+
Ġepis ode
|
806 |
+
y p
|
807 |
+
Ġdesc rib
|
modeling_gpt2.py
ADDED
@@ -0,0 +1,1548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch OpenAI GPT-2 model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
from transformers import GenerationMixin
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.cuda.amp import autocast
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.modeling_outputs import (
|
32 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
33 |
+
CausalLMOutputWithCrossAttentions,
|
34 |
+
SequenceClassifierOutputWithPast,
|
35 |
+
TokenClassifierOutput,
|
36 |
+
)
|
37 |
+
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
|
38 |
+
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
39 |
+
from transformers.utils import (
|
40 |
+
ModelOutput,
|
41 |
+
add_code_sample_docstrings,
|
42 |
+
add_start_docstrings,
|
43 |
+
add_start_docstrings_to_model_forward,
|
44 |
+
logging,
|
45 |
+
replace_return_docstrings,
|
46 |
+
)
|
47 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
48 |
+
from transformers import GPT2Config
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CHECKPOINT_FOR_DOC = "gpt2"
|
54 |
+
_CONFIG_FOR_DOC = "GPT2Config"
|
55 |
+
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
|
56 |
+
|
57 |
+
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
58 |
+
"gpt2",
|
59 |
+
"gpt2-medium",
|
60 |
+
"gpt2-large",
|
61 |
+
"gpt2-xl",
|
62 |
+
"distilgpt2",
|
63 |
+
# See all GPT-2 models at https://huggingface.co/models?filter=gpt2
|
64 |
+
]
|
65 |
+
|
66 |
+
|
67 |
+
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
68 |
+
"""Load tf checkpoints in a pytorch model"""
|
69 |
+
try:
|
70 |
+
import re
|
71 |
+
|
72 |
+
import tensorflow as tf
|
73 |
+
except ImportError:
|
74 |
+
logger.error(
|
75 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
76 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
77 |
+
)
|
78 |
+
raise
|
79 |
+
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
80 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
81 |
+
# Load weights from TF model
|
82 |
+
init_vars = tf.train.list_variables(tf_path)
|
83 |
+
names = []
|
84 |
+
arrays = []
|
85 |
+
for name, shape in init_vars:
|
86 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
87 |
+
array = tf.train.load_variable(tf_path, name)
|
88 |
+
names.append(name)
|
89 |
+
arrays.append(array.squeeze())
|
90 |
+
|
91 |
+
for name, array in zip(names, arrays):
|
92 |
+
name = name[6:] # skip "model/"
|
93 |
+
name = name.split("/")
|
94 |
+
pointer = model
|
95 |
+
for m_name in name:
|
96 |
+
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
97 |
+
scope_names = re.split(r"(\d+)", m_name)
|
98 |
+
else:
|
99 |
+
scope_names = [m_name]
|
100 |
+
if scope_names[0] == "w" or scope_names[0] == "g":
|
101 |
+
pointer = getattr(pointer, "weight")
|
102 |
+
elif scope_names[0] == "b":
|
103 |
+
pointer = getattr(pointer, "bias")
|
104 |
+
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
|
105 |
+
pointer = getattr(pointer, scope_names[0])
|
106 |
+
pointer = getattr(pointer, "weight")
|
107 |
+
else:
|
108 |
+
pointer = getattr(pointer, scope_names[0])
|
109 |
+
if len(scope_names) >= 2:
|
110 |
+
num = int(scope_names[1])
|
111 |
+
pointer = pointer[num]
|
112 |
+
try:
|
113 |
+
assert (
|
114 |
+
pointer.shape == array.shape
|
115 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
116 |
+
except AssertionError as e:
|
117 |
+
e.args += (pointer.shape, array.shape)
|
118 |
+
raise
|
119 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
120 |
+
pointer.data = torch.from_numpy(array)
|
121 |
+
return model
|
122 |
+
|
123 |
+
|
124 |
+
class GPT2Attention(nn.Module):
|
125 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
126 |
+
super().__init__()
|
127 |
+
|
128 |
+
max_positions = config.max_position_embeddings
|
129 |
+
self.register_buffer(
|
130 |
+
"bias",
|
131 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
|
132 |
+
1, 1, max_positions, max_positions
|
133 |
+
),
|
134 |
+
)
|
135 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
136 |
+
|
137 |
+
self.embed_dim = config.hidden_size
|
138 |
+
self.num_heads = config.num_attention_heads
|
139 |
+
self.head_dim = self.embed_dim // self.num_heads
|
140 |
+
self.split_size = self.embed_dim
|
141 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
142 |
+
raise ValueError(
|
143 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
144 |
+
f" {self.num_heads})."
|
145 |
+
)
|
146 |
+
|
147 |
+
self.scale_attn_weights = config.scale_attn_weights
|
148 |
+
self.is_cross_attention = is_cross_attention
|
149 |
+
|
150 |
+
# Layer-wise attention scaling, reordering, and upcasting
|
151 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
152 |
+
self.layer_idx = layer_idx
|
153 |
+
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
154 |
+
|
155 |
+
if self.is_cross_attention:
|
156 |
+
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
157 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
158 |
+
else:
|
159 |
+
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
160 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
161 |
+
|
162 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
163 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
164 |
+
|
165 |
+
self.pruned_heads = set()
|
166 |
+
|
167 |
+
def prune_heads(self, heads):
|
168 |
+
if len(heads) == 0:
|
169 |
+
return
|
170 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
|
171 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
172 |
+
|
173 |
+
# Prune conv1d layers
|
174 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
175 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
176 |
+
|
177 |
+
# Update hyper params
|
178 |
+
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
|
179 |
+
self.num_heads = self.num_heads - len(heads)
|
180 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
181 |
+
|
182 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
183 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
184 |
+
|
185 |
+
if self.scale_attn_weights:
|
186 |
+
attn_weights = attn_weights / torch.full(
|
187 |
+
[], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
|
188 |
+
)
|
189 |
+
|
190 |
+
# Layer-wise attention scaling
|
191 |
+
if self.scale_attn_by_inverse_layer_idx:
|
192 |
+
attn_weights = attn_weights / float(self.layer_idx + 1)
|
193 |
+
|
194 |
+
if not self.is_cross_attention:
|
195 |
+
# if only "normal" attention layer implements causal mask
|
196 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
197 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool)
|
198 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
199 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
200 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
201 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
202 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
203 |
+
|
204 |
+
if attention_mask is not None:
|
205 |
+
# Apply the attention mask
|
206 |
+
attn_weights = attn_weights + attention_mask
|
207 |
+
|
208 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
209 |
+
|
210 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
211 |
+
attn_weights = attn_weights.type(value.dtype)
|
212 |
+
attn_weights = self.attn_dropout(attn_weights)
|
213 |
+
|
214 |
+
# Mask heads if we want to
|
215 |
+
if head_mask is not None:
|
216 |
+
attn_weights = attn_weights * head_mask
|
217 |
+
|
218 |
+
attn_output = torch.matmul(attn_weights, value)
|
219 |
+
|
220 |
+
return attn_output, attn_weights
|
221 |
+
|
222 |
+
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
|
223 |
+
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
|
224 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
225 |
+
_, _, k_seq_len, _ = key.size()
|
226 |
+
|
227 |
+
# Preallocate attn_weights for `baddbmm`
|
228 |
+
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
|
229 |
+
|
230 |
+
# Compute Scale Factor
|
231 |
+
scale_factor = 1.0
|
232 |
+
if self.scale_attn_weights:
|
233 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
234 |
+
|
235 |
+
if self.scale_attn_by_inverse_layer_idx:
|
236 |
+
scale_factor /= float(self.layer_idx + 1)
|
237 |
+
|
238 |
+
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
|
239 |
+
with autocast(enabled=False):
|
240 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
|
241 |
+
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
|
242 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
243 |
+
|
244 |
+
if not self.is_cross_attention:
|
245 |
+
# if only "normal" attention layer implements causal mask
|
246 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
247 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool()
|
248 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
249 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
250 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
251 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
252 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
253 |
+
|
254 |
+
if attention_mask is not None:
|
255 |
+
# Apply the attention mask
|
256 |
+
attn_weights = attn_weights + attention_mask
|
257 |
+
|
258 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
259 |
+
|
260 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
|
261 |
+
if attn_weights.dtype != torch.float32:
|
262 |
+
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
|
263 |
+
attn_weights = attn_weights.type(value.dtype)
|
264 |
+
attn_weights = self.attn_dropout(attn_weights)
|
265 |
+
|
266 |
+
# Mask heads if we want to
|
267 |
+
if head_mask is not None:
|
268 |
+
attn_weights = attn_weights * head_mask
|
269 |
+
|
270 |
+
attn_output = torch.matmul(attn_weights, value)
|
271 |
+
|
272 |
+
return attn_output, attn_weights
|
273 |
+
|
274 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
275 |
+
"""
|
276 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
277 |
+
"""
|
278 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
279 |
+
tensor = tensor.view(new_shape)
|
280 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
281 |
+
|
282 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
283 |
+
"""
|
284 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
285 |
+
"""
|
286 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
287 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
288 |
+
return tensor.view(new_shape)
|
289 |
+
|
290 |
+
def forward(
|
291 |
+
self,
|
292 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
293 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
294 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
295 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
296 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
297 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
298 |
+
use_cache: Optional[bool] = False,
|
299 |
+
output_attentions: Optional[bool] = False,
|
300 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
301 |
+
if encoder_hidden_states is not None:
|
302 |
+
if not hasattr(self, "q_attn"):
|
303 |
+
raise ValueError(
|
304 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
305 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
306 |
+
)
|
307 |
+
|
308 |
+
query = self.q_attn(hidden_states)
|
309 |
+
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
310 |
+
attention_mask = encoder_attention_mask
|
311 |
+
else:
|
312 |
+
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
313 |
+
|
314 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
315 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
316 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
317 |
+
|
318 |
+
value = value + 10
|
319 |
+
print("increased value")
|
320 |
+
|
321 |
+
if layer_past is not None:
|
322 |
+
past_key, past_value = layer_past
|
323 |
+
key = torch.cat((past_key, key), dim=-2)
|
324 |
+
value = torch.cat((past_value, value), dim=-2)
|
325 |
+
|
326 |
+
if use_cache is True:
|
327 |
+
present = (key, value)
|
328 |
+
else:
|
329 |
+
present = None
|
330 |
+
|
331 |
+
if self.reorder_and_upcast_attn:
|
332 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
|
333 |
+
else:
|
334 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
335 |
+
|
336 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
337 |
+
attn_output = self.c_proj(attn_output)
|
338 |
+
attn_output = self.resid_dropout(attn_output)
|
339 |
+
|
340 |
+
outputs = (attn_output, present)
|
341 |
+
if output_attentions:
|
342 |
+
outputs += (attn_weights,)
|
343 |
+
|
344 |
+
return outputs # a, present, (attentions)
|
345 |
+
|
346 |
+
|
347 |
+
class GPT2MLP(nn.Module):
|
348 |
+
def __init__(self, intermediate_size, config):
|
349 |
+
super().__init__()
|
350 |
+
embed_dim = config.hidden_size
|
351 |
+
self.c_fc = Conv1D(intermediate_size, embed_dim)
|
352 |
+
self.c_proj = Conv1D(embed_dim, intermediate_size)
|
353 |
+
self.act = ACT2FN[config.activation_function]
|
354 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
355 |
+
|
356 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
357 |
+
hidden_states = self.c_fc(hidden_states)
|
358 |
+
hidden_states = self.act(hidden_states)
|
359 |
+
hidden_states = self.c_proj(hidden_states)
|
360 |
+
hidden_states = self.dropout(hidden_states)
|
361 |
+
return hidden_states
|
362 |
+
|
363 |
+
|
364 |
+
class GPT2Block(nn.Module):
|
365 |
+
def __init__(self, config, layer_idx=None):
|
366 |
+
super().__init__()
|
367 |
+
hidden_size = config.hidden_size
|
368 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
369 |
+
|
370 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
371 |
+
self.attn = GPT2Attention(config, layer_idx=layer_idx)
|
372 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
373 |
+
|
374 |
+
if config.add_cross_attention:
|
375 |
+
self.crossattention = GPT2Attention(config, is_cross_attention=True, layer_idx=layer_idx)
|
376 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
377 |
+
|
378 |
+
self.mlp = GPT2MLP(inner_dim, config)
|
379 |
+
|
380 |
+
def forward(
|
381 |
+
self,
|
382 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
383 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
384 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
385 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
386 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
387 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
388 |
+
use_cache: Optional[bool] = False,
|
389 |
+
output_attentions: Optional[bool] = False,
|
390 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
391 |
+
residual = hidden_states
|
392 |
+
hidden_states = self.ln_1(hidden_states)
|
393 |
+
attn_outputs = self.attn(
|
394 |
+
hidden_states,
|
395 |
+
layer_past=layer_past,
|
396 |
+
attention_mask=attention_mask,
|
397 |
+
head_mask=head_mask,
|
398 |
+
use_cache=use_cache,
|
399 |
+
output_attentions=output_attentions,
|
400 |
+
)
|
401 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
402 |
+
outputs = attn_outputs[1:]
|
403 |
+
# residual connection
|
404 |
+
hidden_states = attn_output + residual
|
405 |
+
|
406 |
+
if encoder_hidden_states is not None:
|
407 |
+
# add one self-attention block for cross-attention
|
408 |
+
if not hasattr(self, "crossattention"):
|
409 |
+
raise ValueError(
|
410 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
411 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
412 |
+
)
|
413 |
+
residual = hidden_states
|
414 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
415 |
+
cross_attn_outputs = self.crossattention(
|
416 |
+
hidden_states,
|
417 |
+
attention_mask=attention_mask,
|
418 |
+
head_mask=head_mask,
|
419 |
+
encoder_hidden_states=encoder_hidden_states,
|
420 |
+
encoder_attention_mask=encoder_attention_mask,
|
421 |
+
output_attentions=output_attentions,
|
422 |
+
)
|
423 |
+
attn_output = cross_attn_outputs[0]
|
424 |
+
# residual connection
|
425 |
+
hidden_states = residual + attn_output
|
426 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
427 |
+
|
428 |
+
residual = hidden_states
|
429 |
+
hidden_states = self.ln_2(hidden_states)
|
430 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
431 |
+
# residual connection
|
432 |
+
hidden_states = residual + feed_forward_hidden_states
|
433 |
+
|
434 |
+
if use_cache:
|
435 |
+
outputs = (hidden_states,) + outputs
|
436 |
+
else:
|
437 |
+
outputs = (hidden_states,) + outputs[1:]
|
438 |
+
|
439 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
440 |
+
|
441 |
+
|
442 |
+
class GPT2PreTrainedModel(PreTrainedModel):
|
443 |
+
"""
|
444 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
445 |
+
models.
|
446 |
+
"""
|
447 |
+
|
448 |
+
config_class = GPT2Config
|
449 |
+
load_tf_weights = load_tf_weights_in_gpt2
|
450 |
+
base_model_prefix = "transformer"
|
451 |
+
is_parallelizable = True
|
452 |
+
supports_gradient_checkpointing = True
|
453 |
+
_no_split_modules = ["GPT2Block"]
|
454 |
+
|
455 |
+
def __init__(self, *inputs, **kwargs):
|
456 |
+
super().__init__(*inputs, **kwargs)
|
457 |
+
|
458 |
+
def _init_weights(self, module):
|
459 |
+
"""Initialize the weights."""
|
460 |
+
if isinstance(module, (nn.Linear, Conv1D)):
|
461 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
462 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
463 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
464 |
+
if module.bias is not None:
|
465 |
+
module.bias.data.zero_()
|
466 |
+
elif isinstance(module, nn.Embedding):
|
467 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
468 |
+
if module.padding_idx is not None:
|
469 |
+
module.weight.data[module.padding_idx].zero_()
|
470 |
+
elif isinstance(module, nn.LayerNorm):
|
471 |
+
module.bias.data.zero_()
|
472 |
+
module.weight.data.fill_(1.0)
|
473 |
+
|
474 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
475 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
476 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
477 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
478 |
+
#
|
479 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
480 |
+
for name, p in module.named_parameters():
|
481 |
+
if name == "c_proj.weight":
|
482 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
483 |
+
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
|
484 |
+
|
485 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
486 |
+
if isinstance(module, GPT2Model):
|
487 |
+
module.gradient_checkpointing = value
|
488 |
+
|
489 |
+
|
490 |
+
@dataclass
|
491 |
+
class GPT2DoubleHeadsModelOutput(ModelOutput):
|
492 |
+
"""
|
493 |
+
Base class for outputs of models predicting if two sentences are consecutive or not.
|
494 |
+
|
495 |
+
Args:
|
496 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
497 |
+
Language modeling loss.
|
498 |
+
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
|
499 |
+
Multiple choice classification loss.
|
500 |
+
logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
501 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
502 |
+
mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
|
503 |
+
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
504 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
505 |
+
Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
|
506 |
+
sequence_length, embed_size_per_head)`).
|
507 |
+
|
508 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
509 |
+
`past_key_values` input) to speed up sequential decoding.
|
510 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
511 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
512 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
513 |
+
|
514 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
515 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
516 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
517 |
+
sequence_length)`.
|
518 |
+
|
519 |
+
GPT2Attentions weights after the attention softmax, used to compute the weighted average in the
|
520 |
+
self-attention heads.
|
521 |
+
"""
|
522 |
+
|
523 |
+
loss: Optional[torch.FloatTensor] = None
|
524 |
+
mc_loss: Optional[torch.FloatTensor] = None
|
525 |
+
logits: torch.FloatTensor = None
|
526 |
+
mc_logits: torch.FloatTensor = None
|
527 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
528 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
529 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
530 |
+
|
531 |
+
|
532 |
+
GPT2_START_DOCSTRING = r"""
|
533 |
+
|
534 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
535 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
536 |
+
etc.)
|
537 |
+
|
538 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
539 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
540 |
+
and behavior.
|
541 |
+
|
542 |
+
Parameters:
|
543 |
+
config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
|
544 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
545 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
546 |
+
"""
|
547 |
+
|
548 |
+
GPT2_INPUTS_DOCSTRING = r"""
|
549 |
+
Args:
|
550 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
551 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
552 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
553 |
+
sequence tokens in the vocabulary.
|
554 |
+
|
555 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
556 |
+
`input_ids`.
|
557 |
+
|
558 |
+
Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
559 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
560 |
+
|
561 |
+
[What are input IDs?](../glossary#input-ids)
|
562 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
563 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
564 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
565 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
566 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
567 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
568 |
+
|
569 |
+
- 1 for tokens that are **not masked**,
|
570 |
+
- 0 for tokens that are **masked**.
|
571 |
+
|
572 |
+
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
573 |
+
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
574 |
+
`len(past_key_values) + len(input_ids)`
|
575 |
+
|
576 |
+
[What are attention masks?](../glossary#attention-mask)
|
577 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
578 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
579 |
+
1]`:
|
580 |
+
|
581 |
+
- 0 corresponds to a *sentence A* token,
|
582 |
+
- 1 corresponds to a *sentence B* token.
|
583 |
+
|
584 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
585 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
586 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
587 |
+
config.max_position_embeddings - 1]`.
|
588 |
+
|
589 |
+
[What are position IDs?](../glossary#position-ids)
|
590 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
591 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
592 |
+
|
593 |
+
- 1 indicates the head is **not masked**,
|
594 |
+
- 0 indicates the head is **masked**.
|
595 |
+
|
596 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
597 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
598 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
599 |
+
model's internal embedding lookup matrix.
|
600 |
+
|
601 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
602 |
+
`past_key_values`).
|
603 |
+
use_cache (`bool`, *optional*):
|
604 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
605 |
+
`past_key_values`).
|
606 |
+
output_attentions (`bool`, *optional*):
|
607 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
608 |
+
tensors for more detail.
|
609 |
+
output_hidden_states (`bool`, *optional*):
|
610 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
611 |
+
more detail.
|
612 |
+
return_dict (`bool`, *optional*):
|
613 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
614 |
+
"""
|
615 |
+
PARALLELIZE_DOCSTRING = r"""
|
616 |
+
This is an experimental feature and is a subject to change at a moment's notice.
|
617 |
+
|
618 |
+
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
|
619 |
+
it will evenly distribute blocks across all devices.
|
620 |
+
|
621 |
+
Args:
|
622 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
623 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
624 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
625 |
+
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
|
626 |
+
following number of attention modules:
|
627 |
+
|
628 |
+
- gpt2: 12
|
629 |
+
- gpt2-medium: 24
|
630 |
+
- gpt2-large: 36
|
631 |
+
- gpt2-xl: 48
|
632 |
+
|
633 |
+
Example:
|
634 |
+
|
635 |
+
```python
|
636 |
+
# Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
|
637 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2-xl")
|
638 |
+
device_map = {
|
639 |
+
0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
640 |
+
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
|
641 |
+
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
|
642 |
+
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
|
643 |
+
}
|
644 |
+
model.parallelize(device_map)
|
645 |
+
```
|
646 |
+
"""
|
647 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
648 |
+
Moves the model to cpu from a model parallel state.
|
649 |
+
|
650 |
+
Example:
|
651 |
+
|
652 |
+
```python
|
653 |
+
# On a 4 GPU machine with gpt2-large:
|
654 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2-large")
|
655 |
+
device_map = {
|
656 |
+
0: [0, 1, 2, 3, 4, 5, 6, 7],
|
657 |
+
1: [8, 9, 10, 11, 12, 13, 14, 15],
|
658 |
+
2: [16, 17, 18, 19, 20, 21, 22, 23],
|
659 |
+
3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
|
660 |
+
}
|
661 |
+
model.parallelize(device_map) # Splits the model across several devices
|
662 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
663 |
+
```
|
664 |
+
"""
|
665 |
+
|
666 |
+
|
667 |
+
@add_start_docstrings(
|
668 |
+
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
|
669 |
+
GPT2_START_DOCSTRING,
|
670 |
+
)
|
671 |
+
class GPT2Model(GPT2PreTrainedModel):
|
672 |
+
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
|
673 |
+
|
674 |
+
def __init__(self, config):
|
675 |
+
super().__init__(config)
|
676 |
+
|
677 |
+
self.embed_dim = config.hidden_size
|
678 |
+
|
679 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
680 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
681 |
+
|
682 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
683 |
+
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
684 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
685 |
+
|
686 |
+
# Model parallel
|
687 |
+
self.model_parallel = False
|
688 |
+
self.device_map = None
|
689 |
+
self.gradient_checkpointing = False
|
690 |
+
|
691 |
+
# Initialize weights and apply final processing
|
692 |
+
self.post_init()
|
693 |
+
|
694 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
695 |
+
def parallelize(self, device_map=None):
|
696 |
+
# Check validity of device_map
|
697 |
+
self.device_map = (
|
698 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
699 |
+
)
|
700 |
+
assert_device_map(self.device_map, len(self.h))
|
701 |
+
self.model_parallel = True
|
702 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
703 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
704 |
+
self.wte = self.wte.to(self.first_device)
|
705 |
+
self.wpe = self.wpe.to(self.first_device)
|
706 |
+
# Load onto devices
|
707 |
+
for k, v in self.device_map.items():
|
708 |
+
for block in v:
|
709 |
+
cuda_device = "cuda:" + str(k)
|
710 |
+
self.h[block] = self.h[block].to(cuda_device)
|
711 |
+
# ln_f to last
|
712 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
713 |
+
|
714 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
715 |
+
def deparallelize(self):
|
716 |
+
self.model_parallel = False
|
717 |
+
self.device_map = None
|
718 |
+
self.first_device = "cpu"
|
719 |
+
self.last_device = "cpu"
|
720 |
+
self.wte = self.wte.to("cpu")
|
721 |
+
self.wpe = self.wpe.to("cpu")
|
722 |
+
for index in range(len(self.h)):
|
723 |
+
self.h[index] = self.h[index].to("cpu")
|
724 |
+
self.ln_f = self.ln_f.to("cpu")
|
725 |
+
torch.cuda.empty_cache()
|
726 |
+
|
727 |
+
def get_input_embeddings(self):
|
728 |
+
return self.wte
|
729 |
+
|
730 |
+
def set_input_embeddings(self, new_embeddings):
|
731 |
+
self.wte = new_embeddings
|
732 |
+
|
733 |
+
def _prune_heads(self, heads_to_prune):
|
734 |
+
"""
|
735 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
736 |
+
"""
|
737 |
+
for layer, heads in heads_to_prune.items():
|
738 |
+
self.h[layer].attn.prune_heads(heads)
|
739 |
+
|
740 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
741 |
+
@add_code_sample_docstrings(
|
742 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
743 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
744 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
745 |
+
config_class=_CONFIG_FOR_DOC,
|
746 |
+
)
|
747 |
+
def forward(
|
748 |
+
self,
|
749 |
+
input_ids: Optional[torch.LongTensor] = None,
|
750 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
751 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
752 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
753 |
+
position_ids: Optional[torch.LongTensor] = None,
|
754 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
755 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
756 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
757 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
758 |
+
use_cache: Optional[bool] = None,
|
759 |
+
output_attentions: Optional[bool] = None,
|
760 |
+
output_hidden_states: Optional[bool] = None,
|
761 |
+
return_dict: Optional[bool] = None,
|
762 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
763 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
764 |
+
output_hidden_states = (
|
765 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
766 |
+
)
|
767 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
768 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
769 |
+
|
770 |
+
if input_ids is not None and inputs_embeds is not None:
|
771 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
772 |
+
elif input_ids is not None:
|
773 |
+
input_shape = input_ids.size()
|
774 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
775 |
+
batch_size = input_ids.shape[0]
|
776 |
+
elif inputs_embeds is not None:
|
777 |
+
input_shape = inputs_embeds.size()[:-1]
|
778 |
+
batch_size = inputs_embeds.shape[0]
|
779 |
+
else:
|
780 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
781 |
+
|
782 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
783 |
+
|
784 |
+
if token_type_ids is not None:
|
785 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
786 |
+
if position_ids is not None:
|
787 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
788 |
+
|
789 |
+
if past_key_values is None:
|
790 |
+
past_length = 0
|
791 |
+
past_key_values = tuple([None] * len(self.h))
|
792 |
+
else:
|
793 |
+
past_length = past_key_values[0][0].size(-2)
|
794 |
+
if position_ids is None:
|
795 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
796 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
797 |
+
|
798 |
+
# GPT2Attention mask.
|
799 |
+
if attention_mask is not None:
|
800 |
+
if batch_size <= 0:
|
801 |
+
raise ValueError("batch_size has to be defined and > 0")
|
802 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
803 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
804 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
805 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
806 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
807 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
808 |
+
attention_mask = attention_mask[:, None, None, :]
|
809 |
+
|
810 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
811 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
812 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
813 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
814 |
+
# effectively the same as removing these entirely.
|
815 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
816 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
817 |
+
|
818 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
819 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
820 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
821 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
822 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
823 |
+
if encoder_attention_mask is None:
|
824 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
825 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
826 |
+
else:
|
827 |
+
encoder_attention_mask = None
|
828 |
+
|
829 |
+
# Prepare head mask if needed
|
830 |
+
# 1.0 in head_mask indicate we keep the head
|
831 |
+
# attention_probs has shape bsz x n_heads x N x N
|
832 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
833 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
834 |
+
|
835 |
+
if inputs_embeds is None:
|
836 |
+
inputs_embeds = self.wte(input_ids)
|
837 |
+
position_embeds = self.wpe(position_ids)
|
838 |
+
hidden_states = inputs_embeds + position_embeds
|
839 |
+
|
840 |
+
if token_type_ids is not None:
|
841 |
+
token_type_embeds = self.wte(token_type_ids)
|
842 |
+
hidden_states = hidden_states + token_type_embeds
|
843 |
+
|
844 |
+
hidden_states = self.drop(hidden_states)
|
845 |
+
|
846 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
847 |
+
|
848 |
+
presents = () if use_cache else None
|
849 |
+
all_self_attentions = () if output_attentions else None
|
850 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
851 |
+
all_hidden_states = () if output_hidden_states else None
|
852 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
853 |
+
|
854 |
+
# Model parallel
|
855 |
+
if self.model_parallel:
|
856 |
+
torch.cuda.set_device(hidden_states.device)
|
857 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
858 |
+
if layer_past is not None:
|
859 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
860 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
861 |
+
if attention_mask is not None:
|
862 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
863 |
+
if isinstance(head_mask, torch.Tensor):
|
864 |
+
head_mask = head_mask.to(hidden_states.device)
|
865 |
+
if output_hidden_states:
|
866 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
867 |
+
|
868 |
+
if self.gradient_checkpointing and self.training:
|
869 |
+
|
870 |
+
if use_cache:
|
871 |
+
logger.warning(
|
872 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
873 |
+
)
|
874 |
+
use_cache = False
|
875 |
+
|
876 |
+
def create_custom_forward(module):
|
877 |
+
def custom_forward(*inputs):
|
878 |
+
# None for past_key_value
|
879 |
+
return module(*inputs, use_cache, output_attentions)
|
880 |
+
|
881 |
+
return custom_forward
|
882 |
+
|
883 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
884 |
+
create_custom_forward(block),
|
885 |
+
hidden_states,
|
886 |
+
None,
|
887 |
+
attention_mask,
|
888 |
+
head_mask[i],
|
889 |
+
encoder_hidden_states,
|
890 |
+
encoder_attention_mask,
|
891 |
+
)
|
892 |
+
else:
|
893 |
+
outputs = block(
|
894 |
+
hidden_states,
|
895 |
+
layer_past=layer_past,
|
896 |
+
attention_mask=attention_mask,
|
897 |
+
head_mask=head_mask[i],
|
898 |
+
encoder_hidden_states=encoder_hidden_states,
|
899 |
+
encoder_attention_mask=encoder_attention_mask,
|
900 |
+
use_cache=use_cache,
|
901 |
+
output_attentions=output_attentions,
|
902 |
+
)
|
903 |
+
|
904 |
+
hidden_states = outputs[0]
|
905 |
+
if use_cache is True:
|
906 |
+
presents = presents + (outputs[1],)
|
907 |
+
|
908 |
+
if output_attentions:
|
909 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
910 |
+
if self.config.add_cross_attention:
|
911 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
912 |
+
|
913 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
914 |
+
if self.model_parallel:
|
915 |
+
for k, v in self.device_map.items():
|
916 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
917 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
918 |
+
|
919 |
+
hidden_states = self.ln_f(hidden_states)
|
920 |
+
|
921 |
+
hidden_states = hidden_states.view(output_shape)
|
922 |
+
# Add last hidden state
|
923 |
+
if output_hidden_states:
|
924 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
925 |
+
|
926 |
+
if not return_dict:
|
927 |
+
return tuple(
|
928 |
+
v
|
929 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
930 |
+
if v is not None
|
931 |
+
)
|
932 |
+
|
933 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
934 |
+
last_hidden_state=hidden_states,
|
935 |
+
past_key_values=presents,
|
936 |
+
hidden_states=all_hidden_states,
|
937 |
+
attentions=all_self_attentions,
|
938 |
+
cross_attentions=all_cross_attentions,
|
939 |
+
)
|
940 |
+
|
941 |
+
|
942 |
+
@add_start_docstrings(
|
943 |
+
"""
|
944 |
+
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
945 |
+
embeddings).
|
946 |
+
""",
|
947 |
+
GPT2_START_DOCSTRING,
|
948 |
+
)
|
949 |
+
class GPT2CustomLMHeadModel(GPT2PreTrainedModel, GenerationMixin):
|
950 |
+
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
|
951 |
+
|
952 |
+
def __init__(self, config):
|
953 |
+
super().__init__(config)
|
954 |
+
self.transformer = GPT2Model(config)
|
955 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
956 |
+
|
957 |
+
# Model parallel
|
958 |
+
self.model_parallel = False
|
959 |
+
self.device_map = None
|
960 |
+
|
961 |
+
# Initialize weights and apply final processing
|
962 |
+
self.post_init()
|
963 |
+
|
964 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
965 |
+
def parallelize(self, device_map=None):
|
966 |
+
self.device_map = (
|
967 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
968 |
+
if device_map is None
|
969 |
+
else device_map
|
970 |
+
)
|
971 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
972 |
+
self.transformer.parallelize(self.device_map)
|
973 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
974 |
+
self.model_parallel = True
|
975 |
+
|
976 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
977 |
+
def deparallelize(self):
|
978 |
+
self.transformer.deparallelize()
|
979 |
+
self.transformer = self.transformer.to("cpu")
|
980 |
+
self.lm_head = self.lm_head.to("cpu")
|
981 |
+
self.model_parallel = False
|
982 |
+
torch.cuda.empty_cache()
|
983 |
+
|
984 |
+
def get_output_embeddings(self):
|
985 |
+
return self.lm_head
|
986 |
+
|
987 |
+
def set_output_embeddings(self, new_embeddings):
|
988 |
+
self.lm_head = new_embeddings
|
989 |
+
|
990 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
991 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
992 |
+
# only last token for inputs_ids if past is defined in kwargs
|
993 |
+
if past:
|
994 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
995 |
+
if token_type_ids is not None:
|
996 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
997 |
+
|
998 |
+
attention_mask = kwargs.get("attention_mask", None)
|
999 |
+
position_ids = kwargs.get("position_ids", None)
|
1000 |
+
|
1001 |
+
if attention_mask is not None and position_ids is None:
|
1002 |
+
# create position_ids on the fly for batch generation
|
1003 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1004 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1005 |
+
if past:
|
1006 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1007 |
+
else:
|
1008 |
+
position_ids = None
|
1009 |
+
return {
|
1010 |
+
"input_ids": input_ids,
|
1011 |
+
"past_key_values": past,
|
1012 |
+
"use_cache": kwargs.get("use_cache"),
|
1013 |
+
"position_ids": position_ids,
|
1014 |
+
"attention_mask": attention_mask,
|
1015 |
+
"token_type_ids": token_type_ids,
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1019 |
+
@add_code_sample_docstrings(
|
1020 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1021 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1022 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
1023 |
+
config_class=_CONFIG_FOR_DOC,
|
1024 |
+
)
|
1025 |
+
def forward(
|
1026 |
+
self,
|
1027 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1028 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1029 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1030 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1031 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1032 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1033 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1034 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1035 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1036 |
+
labels: Optional[torch.LongTensor] = None,
|
1037 |
+
use_cache: Optional[bool] = None,
|
1038 |
+
output_attentions: Optional[bool] = None,
|
1039 |
+
output_hidden_states: Optional[bool] = None,
|
1040 |
+
return_dict: Optional[bool] = None,
|
1041 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
1042 |
+
r"""
|
1043 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1044 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1045 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1046 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1047 |
+
"""
|
1048 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1049 |
+
|
1050 |
+
transformer_outputs = self.transformer(
|
1051 |
+
input_ids,
|
1052 |
+
past_key_values=past_key_values,
|
1053 |
+
attention_mask=attention_mask,
|
1054 |
+
token_type_ids=token_type_ids,
|
1055 |
+
position_ids=position_ids,
|
1056 |
+
head_mask=head_mask,
|
1057 |
+
inputs_embeds=inputs_embeds,
|
1058 |
+
encoder_hidden_states=encoder_hidden_states,
|
1059 |
+
encoder_attention_mask=encoder_attention_mask,
|
1060 |
+
use_cache=use_cache,
|
1061 |
+
output_attentions=output_attentions,
|
1062 |
+
output_hidden_states=output_hidden_states,
|
1063 |
+
return_dict=return_dict,
|
1064 |
+
)
|
1065 |
+
hidden_states = transformer_outputs[0]
|
1066 |
+
|
1067 |
+
# Set device for model parallelism
|
1068 |
+
if self.model_parallel:
|
1069 |
+
torch.cuda.set_device(self.transformer.first_device)
|
1070 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
1071 |
+
|
1072 |
+
lm_logits = self.lm_head(hidden_states)
|
1073 |
+
|
1074 |
+
loss = None
|
1075 |
+
if labels is not None:
|
1076 |
+
# Shift so that tokens < n predict n
|
1077 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1078 |
+
shift_labels = labels[..., 1:].contiguous()
|
1079 |
+
# Flatten the tokens
|
1080 |
+
loss_fct = CrossEntropyLoss()
|
1081 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1082 |
+
|
1083 |
+
if not return_dict:
|
1084 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1085 |
+
return ((loss,) + output) if loss is not None else output
|
1086 |
+
|
1087 |
+
return CausalLMOutputWithCrossAttentions(
|
1088 |
+
loss=loss,
|
1089 |
+
logits=lm_logits,
|
1090 |
+
past_key_values=transformer_outputs.past_key_values,
|
1091 |
+
hidden_states=transformer_outputs.hidden_states,
|
1092 |
+
attentions=transformer_outputs.attentions,
|
1093 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
@staticmethod
|
1097 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
1098 |
+
"""
|
1099 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1100 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1101 |
+
beam_idx at every generation step.
|
1102 |
+
"""
|
1103 |
+
return tuple(
|
1104 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
1105 |
+
for layer_past in past
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
|
1109 |
+
@add_start_docstrings(
|
1110 |
+
"""
|
1111 |
+
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
|
1112 |
+
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
|
1113 |
+
input embeddings, the classification head takes as input the input of a specified classification token index in the
|
1114 |
+
input sequence).
|
1115 |
+
""",
|
1116 |
+
GPT2_START_DOCSTRING,
|
1117 |
+
)
|
1118 |
+
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
1119 |
+
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
|
1120 |
+
|
1121 |
+
def __init__(self, config):
|
1122 |
+
super().__init__(config)
|
1123 |
+
config.num_labels = 1
|
1124 |
+
self.transformer = GPT2Model(config)
|
1125 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
1126 |
+
self.multiple_choice_head = SequenceSummary(config)
|
1127 |
+
|
1128 |
+
# Model parallel
|
1129 |
+
self.model_parallel = False
|
1130 |
+
self.device_map = None
|
1131 |
+
|
1132 |
+
# Initialize weights and apply final processing
|
1133 |
+
self.post_init()
|
1134 |
+
|
1135 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1136 |
+
def parallelize(self, device_map=None):
|
1137 |
+
self.device_map = (
|
1138 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
1139 |
+
if device_map is None
|
1140 |
+
else device_map
|
1141 |
+
)
|
1142 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
1143 |
+
self.transformer.parallelize(self.device_map)
|
1144 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
1145 |
+
self.multiple_choice_head = self.multiple_choice_head.to(self.transformer.first_device)
|
1146 |
+
self.model_parallel = True
|
1147 |
+
|
1148 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1149 |
+
def deparallelize(self):
|
1150 |
+
self.transformer.deparallelize()
|
1151 |
+
self.transformer = self.transformer.to("cpu")
|
1152 |
+
self.lm_head = self.lm_head.to("cpu")
|
1153 |
+
self.multiple_choice_head = self.multiple_choice_head.to("cpu")
|
1154 |
+
self.model_parallel = False
|
1155 |
+
torch.cuda.empty_cache()
|
1156 |
+
|
1157 |
+
def get_output_embeddings(self):
|
1158 |
+
return self.lm_head
|
1159 |
+
|
1160 |
+
def set_output_embeddings(self, new_embeddings):
|
1161 |
+
self.lm_head = new_embeddings
|
1162 |
+
|
1163 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
1164 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
1165 |
+
# only last token for inputs_ids if past is defined in kwargs
|
1166 |
+
if past:
|
1167 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
1168 |
+
if token_type_ids is not None:
|
1169 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
1170 |
+
|
1171 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1172 |
+
position_ids = kwargs.get("position_ids", None)
|
1173 |
+
|
1174 |
+
if attention_mask is not None and position_ids is None:
|
1175 |
+
# create position_ids on the fly for batch generation
|
1176 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1177 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1178 |
+
if past:
|
1179 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1180 |
+
else:
|
1181 |
+
position_ids = None
|
1182 |
+
|
1183 |
+
return {
|
1184 |
+
"input_ids": input_ids,
|
1185 |
+
"past_key_values": past,
|
1186 |
+
"use_cache": kwargs.get("use_cache"),
|
1187 |
+
"position_ids": position_ids,
|
1188 |
+
"attention_mask": attention_mask,
|
1189 |
+
"token_type_ids": token_type_ids,
|
1190 |
+
}
|
1191 |
+
|
1192 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1193 |
+
@replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
|
1194 |
+
def forward(
|
1195 |
+
self,
|
1196 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1197 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1198 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1199 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1200 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1201 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1202 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1203 |
+
mc_token_ids: Optional[torch.LongTensor] = None,
|
1204 |
+
labels: Optional[torch.LongTensor] = None,
|
1205 |
+
mc_labels: Optional[torch.LongTensor] = None,
|
1206 |
+
use_cache: Optional[bool] = None,
|
1207 |
+
output_attentions: Optional[bool] = None,
|
1208 |
+
output_hidden_states: Optional[bool] = None,
|
1209 |
+
return_dict: Optional[bool] = None,
|
1210 |
+
**kwargs,
|
1211 |
+
) -> Union[Tuple, GPT2DoubleHeadsModelOutput]:
|
1212 |
+
r"""
|
1213 |
+
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
|
1214 |
+
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
|
1215 |
+
1]`.
|
1216 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1217 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1218 |
+
`labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to
|
1219 |
+
`-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`
|
1220 |
+
mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
|
1221 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
1222 |
+
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
|
1223 |
+
|
1224 |
+
Return:
|
1225 |
+
|
1226 |
+
Example:
|
1227 |
+
|
1228 |
+
```python
|
1229 |
+
>>> import torch
|
1230 |
+
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
|
1231 |
+
|
1232 |
+
>>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
1233 |
+
>>> model = GPT2DoubleHeadsModel.from_pretrained("gpt2")
|
1234 |
+
|
1235 |
+
>>> # Add a [CLS] to the vocabulary (we should train it also!)
|
1236 |
+
>>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"})
|
1237 |
+
>>> # Update the model embeddings with the new vocabulary size
|
1238 |
+
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer))
|
1239 |
+
|
1240 |
+
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
|
1241 |
+
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
|
1242 |
+
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
|
1243 |
+
|
1244 |
+
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
|
1245 |
+
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
|
1246 |
+
|
1247 |
+
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
|
1248 |
+
>>> lm_logits = outputs.logits
|
1249 |
+
>>> mc_logits = outputs.mc_logits
|
1250 |
+
```"""
|
1251 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1252 |
+
|
1253 |
+
transformer_outputs = self.transformer(
|
1254 |
+
input_ids,
|
1255 |
+
past_key_values=past_key_values,
|
1256 |
+
attention_mask=attention_mask,
|
1257 |
+
token_type_ids=token_type_ids,
|
1258 |
+
position_ids=position_ids,
|
1259 |
+
head_mask=head_mask,
|
1260 |
+
inputs_embeds=inputs_embeds,
|
1261 |
+
use_cache=use_cache,
|
1262 |
+
output_attentions=output_attentions,
|
1263 |
+
output_hidden_states=output_hidden_states,
|
1264 |
+
return_dict=return_dict,
|
1265 |
+
)
|
1266 |
+
|
1267 |
+
hidden_states = transformer_outputs[0]
|
1268 |
+
|
1269 |
+
# Set device for model parallelism
|
1270 |
+
if self.model_parallel:
|
1271 |
+
torch.cuda.set_device(self.transformer.first_device)
|
1272 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
1273 |
+
|
1274 |
+
lm_logits = self.lm_head(hidden_states)
|
1275 |
+
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
1276 |
+
|
1277 |
+
mc_loss = None
|
1278 |
+
if mc_labels is not None:
|
1279 |
+
loss_fct = CrossEntropyLoss()
|
1280 |
+
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
|
1281 |
+
lm_loss = None
|
1282 |
+
if labels is not None:
|
1283 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1284 |
+
shift_labels = labels[..., 1:].contiguous()
|
1285 |
+
loss_fct = CrossEntropyLoss()
|
1286 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1287 |
+
|
1288 |
+
if not return_dict:
|
1289 |
+
output = (lm_logits, mc_logits) + transformer_outputs[1:]
|
1290 |
+
if mc_loss is not None:
|
1291 |
+
output = (mc_loss,) + output
|
1292 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1293 |
+
|
1294 |
+
return GPT2DoubleHeadsModelOutput(
|
1295 |
+
loss=lm_loss,
|
1296 |
+
mc_loss=mc_loss,
|
1297 |
+
logits=lm_logits,
|
1298 |
+
mc_logits=mc_logits,
|
1299 |
+
past_key_values=transformer_outputs.past_key_values,
|
1300 |
+
hidden_states=transformer_outputs.hidden_states,
|
1301 |
+
attentions=transformer_outputs.attentions,
|
1302 |
+
)
|
1303 |
+
|
1304 |
+
@staticmethod
|
1305 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
1306 |
+
"""
|
1307 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1308 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1309 |
+
beam_idx at every generation step.
|
1310 |
+
"""
|
1311 |
+
return tuple(
|
1312 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
1313 |
+
for layer_past in past
|
1314 |
+
)
|
1315 |
+
|
1316 |
+
|
1317 |
+
@add_start_docstrings(
|
1318 |
+
"""
|
1319 |
+
The GPT2 Model transformer with a sequence classification head on top (linear layer).
|
1320 |
+
|
1321 |
+
[`GPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1322 |
+
(e.g. GPT-1) do.
|
1323 |
+
|
1324 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1325 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1326 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1327 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1328 |
+
each row of the batch).
|
1329 |
+
""",
|
1330 |
+
GPT2_START_DOCSTRING,
|
1331 |
+
)
|
1332 |
+
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
1333 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
|
1334 |
+
|
1335 |
+
def __init__(self, config):
|
1336 |
+
super().__init__(config)
|
1337 |
+
self.num_labels = config.num_labels
|
1338 |
+
self.transformer = GPT2Model(config)
|
1339 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1340 |
+
|
1341 |
+
# Model parallel
|
1342 |
+
self.model_parallel = False
|
1343 |
+
self.device_map = None
|
1344 |
+
|
1345 |
+
# Initialize weights and apply final processing
|
1346 |
+
self.post_init()
|
1347 |
+
|
1348 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1349 |
+
@add_code_sample_docstrings(
|
1350 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1351 |
+
checkpoint="microsoft/DialogRPT-updown",
|
1352 |
+
output_type=SequenceClassifierOutputWithPast,
|
1353 |
+
config_class=_CONFIG_FOR_DOC,
|
1354 |
+
expected_output="'LABEL_0'",
|
1355 |
+
expected_loss=5.28,
|
1356 |
+
)
|
1357 |
+
def forward(
|
1358 |
+
self,
|
1359 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1360 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1361 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1362 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1363 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1364 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1365 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1366 |
+
labels: Optional[torch.LongTensor] = None,
|
1367 |
+
use_cache: Optional[bool] = None,
|
1368 |
+
output_attentions: Optional[bool] = None,
|
1369 |
+
output_hidden_states: Optional[bool] = None,
|
1370 |
+
return_dict: Optional[bool] = None,
|
1371 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1372 |
+
r"""
|
1373 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1374 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1375 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1376 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1377 |
+
"""
|
1378 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1379 |
+
|
1380 |
+
transformer_outputs = self.transformer(
|
1381 |
+
input_ids,
|
1382 |
+
past_key_values=past_key_values,
|
1383 |
+
attention_mask=attention_mask,
|
1384 |
+
token_type_ids=token_type_ids,
|
1385 |
+
position_ids=position_ids,
|
1386 |
+
head_mask=head_mask,
|
1387 |
+
inputs_embeds=inputs_embeds,
|
1388 |
+
use_cache=use_cache,
|
1389 |
+
output_attentions=output_attentions,
|
1390 |
+
output_hidden_states=output_hidden_states,
|
1391 |
+
return_dict=return_dict,
|
1392 |
+
)
|
1393 |
+
hidden_states = transformer_outputs[0]
|
1394 |
+
logits = self.score(hidden_states)
|
1395 |
+
|
1396 |
+
if input_ids is not None:
|
1397 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1398 |
+
else:
|
1399 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1400 |
+
|
1401 |
+
assert (
|
1402 |
+
self.config.pad_token_id is not None or batch_size == 1
|
1403 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
1404 |
+
if self.config.pad_token_id is None:
|
1405 |
+
sequence_lengths = -1
|
1406 |
+
else:
|
1407 |
+
if input_ids is not None:
|
1408 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
1409 |
+
else:
|
1410 |
+
sequence_lengths = -1
|
1411 |
+
logger.warning(
|
1412 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1413 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1414 |
+
)
|
1415 |
+
|
1416 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1417 |
+
|
1418 |
+
loss = None
|
1419 |
+
if labels is not None:
|
1420 |
+
if self.config.problem_type is None:
|
1421 |
+
if self.num_labels == 1:
|
1422 |
+
self.config.problem_type = "regression"
|
1423 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1424 |
+
self.config.problem_type = "single_label_classification"
|
1425 |
+
else:
|
1426 |
+
self.config.problem_type = "multi_label_classification"
|
1427 |
+
|
1428 |
+
if self.config.problem_type == "regression":
|
1429 |
+
loss_fct = MSELoss()
|
1430 |
+
if self.num_labels == 1:
|
1431 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1432 |
+
else:
|
1433 |
+
loss = loss_fct(pooled_logits, labels)
|
1434 |
+
elif self.config.problem_type == "single_label_classification":
|
1435 |
+
loss_fct = CrossEntropyLoss()
|
1436 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1437 |
+
elif self.config.problem_type == "multi_label_classification":
|
1438 |
+
loss_fct = BCEWithLogitsLoss()
|
1439 |
+
loss = loss_fct(pooled_logits, labels)
|
1440 |
+
if not return_dict:
|
1441 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1442 |
+
return ((loss,) + output) if loss is not None else output
|
1443 |
+
|
1444 |
+
return SequenceClassifierOutputWithPast(
|
1445 |
+
loss=loss,
|
1446 |
+
logits=pooled_logits,
|
1447 |
+
past_key_values=transformer_outputs.past_key_values,
|
1448 |
+
hidden_states=transformer_outputs.hidden_states,
|
1449 |
+
attentions=transformer_outputs.attentions,
|
1450 |
+
)
|
1451 |
+
|
1452 |
+
|
1453 |
+
@add_start_docstrings(
|
1454 |
+
"""
|
1455 |
+
GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1456 |
+
Named-Entity-Recognition (NER) tasks.
|
1457 |
+
""",
|
1458 |
+
GPT2_START_DOCSTRING,
|
1459 |
+
)
|
1460 |
+
class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
1461 |
+
def __init__(self, config):
|
1462 |
+
super().__init__(config)
|
1463 |
+
self.num_labels = config.num_labels
|
1464 |
+
|
1465 |
+
self.transformer = GPT2Model(config)
|
1466 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
1467 |
+
classifier_dropout = config.classifier_dropout
|
1468 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
1469 |
+
classifier_dropout = config.hidden_dropout
|
1470 |
+
else:
|
1471 |
+
classifier_dropout = 0.1
|
1472 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1473 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1474 |
+
|
1475 |
+
# Model parallel
|
1476 |
+
self.model_parallel = False
|
1477 |
+
self.device_map = None
|
1478 |
+
|
1479 |
+
# Initialize weights and apply final processing
|
1480 |
+
self.post_init()
|
1481 |
+
|
1482 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1483 |
+
# fmt: off
|
1484 |
+
@add_code_sample_docstrings(
|
1485 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1486 |
+
checkpoint="brad1141/gpt2-finetuned-comp2",
|
1487 |
+
output_type=TokenClassifierOutput,
|
1488 |
+
config_class=_CONFIG_FOR_DOC,
|
1489 |
+
expected_loss=0.25,
|
1490 |
+
expected_output=["Lead", "Lead", "Lead", "Position", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead"],
|
1491 |
+
)
|
1492 |
+
# fmt: on
|
1493 |
+
def forward(
|
1494 |
+
self,
|
1495 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1496 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1497 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1498 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1499 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1500 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1501 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1502 |
+
labels: Optional[torch.LongTensor] = None,
|
1503 |
+
use_cache: Optional[bool] = None,
|
1504 |
+
output_attentions: Optional[bool] = None,
|
1505 |
+
output_hidden_states: Optional[bool] = None,
|
1506 |
+
return_dict: Optional[bool] = None,
|
1507 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1508 |
+
r"""
|
1509 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1510 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1511 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1512 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1513 |
+
"""
|
1514 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1515 |
+
|
1516 |
+
transformer_outputs = self.transformer(
|
1517 |
+
input_ids,
|
1518 |
+
past_key_values=past_key_values,
|
1519 |
+
attention_mask=attention_mask,
|
1520 |
+
token_type_ids=token_type_ids,
|
1521 |
+
position_ids=position_ids,
|
1522 |
+
head_mask=head_mask,
|
1523 |
+
inputs_embeds=inputs_embeds,
|
1524 |
+
use_cache=use_cache,
|
1525 |
+
output_attentions=output_attentions,
|
1526 |
+
output_hidden_states=output_hidden_states,
|
1527 |
+
return_dict=return_dict,
|
1528 |
+
)
|
1529 |
+
|
1530 |
+
hidden_states = transformer_outputs[0]
|
1531 |
+
hidden_states = self.dropout(hidden_states)
|
1532 |
+
logits = self.classifier(hidden_states)
|
1533 |
+
|
1534 |
+
loss = None
|
1535 |
+
if labels is not None:
|
1536 |
+
loss_fct = CrossEntropyLoss()
|
1537 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1538 |
+
|
1539 |
+
if not return_dict:
|
1540 |
+
output = (logits,) + transformer_outputs[2:]
|
1541 |
+
return ((loss,) + output) if loss is not None else output
|
1542 |
+
|
1543 |
+
return TokenClassifierOutput(
|
1544 |
+
loss=loss,
|
1545 |
+
logits=logits,
|
1546 |
+
hidden_states=transformer_outputs.hidden_states,
|
1547 |
+
attentions=transformer_outputs.attentions,
|
1548 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:677f711dfade47fe3bb712a5af6dc3b8bfeb1e22967a4f78777df319d2e15909
|
3 |
+
size 1781199
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"unk_token": "<|endoftext|>"
|
5 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,1853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "1.0",
|
3 |
+
"truncation": null,
|
4 |
+
"padding": null,
|
5 |
+
"added_tokens": [
|
6 |
+
{
|
7 |
+
"id": 0,
|
8 |
+
"content": "<|endoftext|>",
|
9 |
+
"single_word": false,
|
10 |
+
"lstrip": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"special": true
|
14 |
+
}
|
15 |
+
],
|
16 |
+
"normalizer": null,
|
17 |
+
"pre_tokenizer": {
|
18 |
+
"type": "ByteLevel",
|
19 |
+
"add_prefix_space": false,
|
20 |
+
"trim_offsets": true,
|
21 |
+
"use_regex": true
|
22 |
+
},
|
23 |
+
"post_processor": {
|
24 |
+
"type": "ByteLevel",
|
25 |
+
"add_prefix_space": true,
|
26 |
+
"trim_offsets": false,
|
27 |
+
"use_regex": true
|
28 |
+
},
|
29 |
+
"decoder": {
|
30 |
+
"type": "ByteLevel",
|
31 |
+
"add_prefix_space": true,
|
32 |
+
"trim_offsets": true,
|
33 |
+
"use_regex": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"type": "BPE",
|
37 |
+
"dropout": null,
|
38 |
+
"unk_token": null,
|
39 |
+
"continuing_subword_prefix": "",
|
40 |
+
"end_of_word_suffix": "",
|
41 |
+
"fuse_unk": false,
|
42 |
+
"vocab": {
|
43 |
+
"<|endoftext|>": 0,
|
44 |
+
"!": 1,
|
45 |
+
"\"": 2,
|
46 |
+
"#": 3,
|
47 |
+
"$": 4,
|
48 |
+
"%": 5,
|
49 |
+
"&": 6,
|
50 |
+
"'": 7,
|
51 |
+
"(": 8,
|
52 |
+
")": 9,
|
53 |
+
"*": 10,
|
54 |
+
"+": 11,
|
55 |
+
",": 12,
|
56 |
+
"-": 13,
|
57 |
+
".": 14,
|
58 |
+
"/": 15,
|
59 |
+
"0": 16,
|
60 |
+
"1": 17,
|
61 |
+
"2": 18,
|
62 |
+
"3": 19,
|
63 |
+
"4": 20,
|
64 |
+
"5": 21,
|
65 |
+
"6": 22,
|
66 |
+
"7": 23,
|
67 |
+
"8": 24,
|
68 |
+
"9": 25,
|
69 |
+
":": 26,
|
70 |
+
";": 27,
|
71 |
+
"<": 28,
|
72 |
+
"=": 29,
|
73 |
+
">": 30,
|
74 |
+
"?": 31,
|
75 |
+
"@": 32,
|
76 |
+
"A": 33,
|
77 |
+
"B": 34,
|
78 |
+
"C": 35,
|
79 |
+
"D": 36,
|
80 |
+
"E": 37,
|
81 |
+
"F": 38,
|
82 |
+
"G": 39,
|
83 |
+
"H": 40,
|
84 |
+
"I": 41,
|
85 |
+
"J": 42,
|
86 |
+
"K": 43,
|
87 |
+
"L": 44,
|
88 |
+
"M": 45,
|
89 |
+
"N": 46,
|
90 |
+
"O": 47,
|
91 |
+
"P": 48,
|
92 |
+
"Q": 49,
|
93 |
+
"R": 50,
|
94 |
+
"S": 51,
|
95 |
+
"T": 52,
|
96 |
+
"U": 53,
|
97 |
+
"V": 54,
|
98 |
+
"W": 55,
|
99 |
+
"X": 56,
|
100 |
+
"Y": 57,
|
101 |
+
"Z": 58,
|
102 |
+
"[": 59,
|
103 |
+
"\\": 60,
|
104 |
+
"]": 61,
|
105 |
+
"^": 62,
|
106 |
+
"_": 63,
|
107 |
+
"`": 64,
|
108 |
+
"a": 65,
|
109 |
+
"b": 66,
|
110 |
+
"c": 67,
|
111 |
+
"d": 68,
|
112 |
+
"e": 69,
|
113 |
+
"f": 70,
|
114 |
+
"g": 71,
|
115 |
+
"h": 72,
|
116 |
+
"i": 73,
|
117 |
+
"j": 74,
|
118 |
+
"k": 75,
|
119 |
+
"l": 76,
|
120 |
+
"m": 77,
|
121 |
+
"n": 78,
|
122 |
+
"o": 79,
|
123 |
+
"p": 80,
|
124 |
+
"q": 81,
|
125 |
+
"r": 82,
|
126 |
+
"s": 83,
|
127 |
+
"t": 84,
|
128 |
+
"u": 85,
|
129 |
+
"v": 86,
|
130 |
+
"w": 87,
|
131 |
+
"x": 88,
|
132 |
+
"y": 89,
|
133 |
+
"z": 90,
|
134 |
+
"|": 91,
|
135 |
+
"}": 92,
|
136 |
+
"~": 93,
|
137 |
+
"¡": 94,
|
138 |
+
"¢": 95,
|
139 |
+
"£": 96,
|
140 |
+
"¤": 97,
|
141 |
+
"¥": 98,
|
142 |
+
"¦": 99,
|
143 |
+
"§": 100,
|
144 |
+
"¨": 101,
|
145 |
+
"©": 102,
|
146 |
+
"ª": 103,
|
147 |
+
"«": 104,
|
148 |
+
"¬": 105,
|
149 |
+
"®": 106,
|
150 |
+
"¯": 107,
|
151 |
+
"°": 108,
|
152 |
+
"±": 109,
|
153 |
+
"²": 110,
|
154 |
+
"³": 111,
|
155 |
+
"´": 112,
|
156 |
+
"µ": 113,
|
157 |
+
"¶": 114,
|
158 |
+
"·": 115,
|
159 |
+
"¸": 116,
|
160 |
+
"¹": 117,
|
161 |
+
"º": 118,
|
162 |
+
"»": 119,
|
163 |
+
"¼": 120,
|
164 |
+
"½": 121,
|
165 |
+
"¾": 122,
|
166 |
+
"¿": 123,
|
167 |
+
"Â": 124,
|
168 |
+
"Ã": 125,
|
169 |
+
"Ä": 126,
|
170 |
+
"Å": 127,
|
171 |
+
"Æ": 128,
|
172 |
+
"Ç": 129,
|
173 |
+
"È": 130,
|
174 |
+
"É": 131,
|
175 |
+
"Ê": 132,
|
176 |
+
"Ë": 133,
|
177 |
+
"Ì": 134,
|
178 |
+
"Í": 135,
|
179 |
+
"Î": 136,
|
180 |
+
"Ï": 137,
|
181 |
+
"Ð": 138,
|
182 |
+
"Ñ": 139,
|
183 |
+
"Ö": 140,
|
184 |
+
"×": 141,
|
185 |
+
"Ø": 142,
|
186 |
+
"Ù": 143,
|
187 |
+
"Ü": 144,
|
188 |
+
"à": 145,
|
189 |
+
"á": 146,
|
190 |
+
"â": 147,
|
191 |
+
"ã": 148,
|
192 |
+
"ä": 149,
|
193 |
+
"å": 150,
|
194 |
+
"æ": 151,
|
195 |
+
"ç": 152,
|
196 |
+
"è": 153,
|
197 |
+
"é": 154,
|
198 |
+
"ë": 155,
|
199 |
+
"ì": 156,
|
200 |
+
"ï": 157,
|
201 |
+
"Ċ": 158,
|
202 |
+
"Ġ": 159,
|
203 |
+
"Ģ": 160,
|
204 |
+
"ģ": 161,
|
205 |
+
"Ĥ": 162,
|
206 |
+
"ĥ": 163,
|
207 |
+
"Ħ": 164,
|
208 |
+
"ħ": 165,
|
209 |
+
"Ĩ": 166,
|
210 |
+
"ĩ": 167,
|
211 |
+
"Ī": 168,
|
212 |
+
"ī": 169,
|
213 |
+
"Ĭ": 170,
|
214 |
+
"ĭ": 171,
|
215 |
+
"Į": 172,
|
216 |
+
"į": 173,
|
217 |
+
"İ": 174,
|
218 |
+
"ı": 175,
|
219 |
+
"IJ": 176,
|
220 |
+
"ij": 177,
|
221 |
+
"Ĵ": 178,
|
222 |
+
"ĵ": 179,
|
223 |
+
"Ķ": 180,
|
224 |
+
"ķ": 181,
|
225 |
+
"ĸ": 182,
|
226 |
+
"Ĺ": 183,
|
227 |
+
"ĺ": 184,
|
228 |
+
"Ļ": 185,
|
229 |
+
"ļ": 186,
|
230 |
+
"Ľ": 187,
|
231 |
+
"ľ": 188,
|
232 |
+
"Ŀ": 189,
|
233 |
+
"ŀ": 190,
|
234 |
+
"Ł": 191,
|
235 |
+
"ł": 192,
|
236 |
+
"Ń": 193,
|
237 |
+
"Ġt": 194,
|
238 |
+
"he": 195,
|
239 |
+
"Ġa": 196,
|
240 |
+
"in": 197,
|
241 |
+
"Ġthe": 198,
|
242 |
+
"er": 199,
|
243 |
+
"on": 200,
|
244 |
+
"Ġ,": 201,
|
245 |
+
"re": 202,
|
246 |
+
"Ġs": 203,
|
247 |
+
"ed": 204,
|
248 |
+
"Ġo": 205,
|
249 |
+
"Ġw": 206,
|
250 |
+
"nd": 207,
|
251 |
+
"at": 208,
|
252 |
+
"Ġ.": 209,
|
253 |
+
"or": 210,
|
254 |
+
"it": 211,
|
255 |
+
"Ġc": 212,
|
256 |
+
"en": 213,
|
257 |
+
"Ġf": 214,
|
258 |
+
"is": 215,
|
259 |
+
"es": 216,
|
260 |
+
"ar": 217,
|
261 |
+
"Ġof": 218,
|
262 |
+
"Ġb": 219,
|
263 |
+
"an": 220,
|
264 |
+
"Ġin": 221,
|
265 |
+
"al": 222,
|
266 |
+
"ing": 223,
|
267 |
+
"Ġp": 224,
|
268 |
+
"Ġand": 225,
|
269 |
+
"as": 226,
|
270 |
+
"Ġto": 227,
|
271 |
+
"ro": 228,
|
272 |
+
"ic": 229,
|
273 |
+
"Ġm": 230,
|
274 |
+
"Ġd": 231,
|
275 |
+
"Ġh": 232,
|
276 |
+
"ion": 233,
|
277 |
+
"le": 234,
|
278 |
+
"ou": 235,
|
279 |
+
"ĠT": 236,
|
280 |
+
"Ġre": 237,
|
281 |
+
"Ġ=": 238,
|
282 |
+
"Ġ\"": 239,
|
283 |
+
"ĠA": 240,
|
284 |
+
"ĠS": 241,
|
285 |
+
"ent": 242,
|
286 |
+
"il": 243,
|
287 |
+
"Ġth": 244,
|
288 |
+
"Ġ1": 245,
|
289 |
+
"st": 246,
|
290 |
+
"ĠC": 247,
|
291 |
+
"el": 248,
|
292 |
+
"om": 249,
|
293 |
+
"Ġl": 250,
|
294 |
+
"am": 251,
|
295 |
+
"ĠĊ": 252,
|
296 |
+
"Ġe": 253,
|
297 |
+
"Ġn": 254,
|
298 |
+
"Ġ@": 255,
|
299 |
+
"ad": 256,
|
300 |
+
"ac": 257,
|
301 |
+
"Ġwas": 258,
|
302 |
+
"ĠM": 259,
|
303 |
+
"ur": 260,
|
304 |
+
"ĠThe": 261,
|
305 |
+
"ec": 262,
|
306 |
+
"Ġon": 263,
|
307 |
+
"ly": 264,
|
308 |
+
"ĠB": 265,
|
309 |
+
"ĠI": 266,
|
310 |
+
"Ġg": 267,
|
311 |
+
"Ġ'": 268,
|
312 |
+
"et": 269,
|
313 |
+
"ol": 270,
|
314 |
+
"id": 271,
|
315 |
+
"iv": 272,
|
316 |
+
"im": 273,
|
317 |
+
"Ġfor": 274,
|
318 |
+
"ir": 275,
|
319 |
+
"-@": 276,
|
320 |
+
"Ġ@-@": 277,
|
321 |
+
"ig": 278,
|
322 |
+
"ot": 279,
|
323 |
+
"ter": 280,
|
324 |
+
"Ġas": 281,
|
325 |
+
"ĠH": 282,
|
326 |
+
"us": 283,
|
327 |
+
"ow": 284,
|
328 |
+
"Ġst": 285,
|
329 |
+
"ut": 286,
|
330 |
+
"ith": 287,
|
331 |
+
"ay": 288,
|
332 |
+
"Ġ2": 289,
|
333 |
+
"ĠP": 290,
|
334 |
+
"ation": 291,
|
335 |
+
"ver": 292,
|
336 |
+
"Ġbe": 293,
|
337 |
+
"her": 294,
|
338 |
+
"Ġthat": 295,
|
339 |
+
"Ġwith": 296,
|
340 |
+
"ĠR": 297,
|
341 |
+
"ce": 298,
|
342 |
+
"th": 299,
|
343 |
+
"ĠD": 300,
|
344 |
+
"Ġis": 301,
|
345 |
+
"un": 302,
|
346 |
+
"em": 303,
|
347 |
+
"ĠF": 304,
|
348 |
+
"Ġwh": 305,
|
349 |
+
"ul": 306,
|
350 |
+
"Ġby": 307,
|
351 |
+
"Ġal": 308,
|
352 |
+
"ch": 309,
|
353 |
+
"Ġ)": 310,
|
354 |
+
"Ġ(": 311,
|
355 |
+
"ĠW": 312,
|
356 |
+
"Ġcon": 313,
|
357 |
+
"ra": 314,
|
358 |
+
"ĠG": 315,
|
359 |
+
"os": 316,
|
360 |
+
"ĠL": 317,
|
361 |
+
"ĠN": 318,
|
362 |
+
"Ġat": 319,
|
363 |
+
"ers": 320,
|
364 |
+
"ct": 321,
|
365 |
+
"Ġit": 322,
|
366 |
+
"Ġ19": 323,
|
367 |
+
"rom": 324,
|
368 |
+
"and": 325,
|
369 |
+
"Ġan": 326,
|
370 |
+
"um": 327,
|
371 |
+
"est": 328,
|
372 |
+
"ĠJ": 329,
|
373 |
+
"ag": 330,
|
374 |
+
"Ġhe": 331,
|
375 |
+
"00": 332,
|
376 |
+
"ist": 333,
|
377 |
+
"ain": 334,
|
378 |
+
"od": 335,
|
379 |
+
"av": 336,
|
380 |
+
"ri": 337,
|
381 |
+
"ĠE": 338,
|
382 |
+
"ĠO": 339,
|
383 |
+
"Ġfrom": 340,
|
384 |
+
"Ġcom": 341,
|
385 |
+
"Ġhis": 342,
|
386 |
+
"op": 343,
|
387 |
+
"Ġpro": 344,
|
388 |
+
"res": 345,
|
389 |
+
"ies": 346,
|
390 |
+
"if": 347,
|
391 |
+
"Ġv": 348,
|
392 |
+
"ort": 349,
|
393 |
+
"ere": 350,
|
394 |
+
"ill": 351,
|
395 |
+
"ld": 352,
|
396 |
+
"Ġde": 353,
|
397 |
+
"pp": 354,
|
398 |
+
"Ġsu": 355,
|
399 |
+
"ore": 356,
|
400 |
+
"ĠIn": 357,
|
401 |
+
"Ġr": 358,
|
402 |
+
"Ġse": 359,
|
403 |
+
"Ġwere": 360,
|
404 |
+
"ew": 361,
|
405 |
+
"ong": 362,
|
406 |
+
"igh": 363,
|
407 |
+
"ard": 364,
|
408 |
+
"ate": 365,
|
409 |
+
"all": 366,
|
410 |
+
"art": 367,
|
411 |
+
"ak": 368,
|
412 |
+
"ich": 369,
|
413 |
+
"Ġch": 370,
|
414 |
+
"Ġor": 371,
|
415 |
+
"ab": 372,
|
416 |
+
"ant": 373,
|
417 |
+
"ud": 374,
|
418 |
+
"oc": 375,
|
419 |
+
"ber": 376,
|
420 |
+
"Ġex": 377,
|
421 |
+
"gh": 378,
|
422 |
+
"ity": 379,
|
423 |
+
"ated": 380,
|
424 |
+
"pt": 381,
|
425 |
+
"ess": 382,
|
426 |
+
"ear": 383,
|
427 |
+
"ĠK": 384,
|
428 |
+
"Ġpl": 385,
|
429 |
+
"ame": 386,
|
430 |
+
"qu": 387,
|
431 |
+
"ive": 388,
|
432 |
+
"rou": 389,
|
433 |
+
"Ġare": 390,
|
434 |
+
"Ġâ": 391,
|
435 |
+
"Ġsh": 392,
|
436 |
+
"Ġk": 393,
|
437 |
+
"ack": 394,
|
438 |
+
"ect": 395,
|
439 |
+
"ĠâĢ": 396,
|
440 |
+
"ĠU": 397,
|
441 |
+
"Ġhad": 398,
|
442 |
+
"se": 399,
|
443 |
+
"Ġwhich": 400,
|
444 |
+
"red": 401,
|
445 |
+
"ov": 402,
|
446 |
+
"ĠSt": 403,
|
447 |
+
"ast": 404,
|
448 |
+
"Ġsp": 405,
|
449 |
+
"ian": 406,
|
450 |
+
"Ġy": 407,
|
451 |
+
"ment": 408,
|
452 |
+
"Ġle": 409,
|
453 |
+
"Ġnot": 410,
|
454 |
+
"ge": 411,
|
455 |
+
"ord": 412,
|
456 |
+
"rit": 413,
|
457 |
+
"ip": 414,
|
458 |
+
"ine": 415,
|
459 |
+
"ell": 416,
|
460 |
+
"ally": 417,
|
461 |
+
"our": 418,
|
462 |
+
"ost": 419,
|
463 |
+
"ight": 420,
|
464 |
+
"ther": 421,
|
465 |
+
"ap": 422,
|
466 |
+
"Ġu": 423,
|
467 |
+
"ish": 424,
|
468 |
+
"ĠCh": 425,
|
469 |
+
"oun": 426,
|
470 |
+
"ia": 427,
|
471 |
+
"Ġ3": 428,
|
472 |
+
"ave": 429,
|
473 |
+
"ary": 430,
|
474 |
+
"ust": 431,
|
475 |
+
"og": 432,
|
476 |
+
"Ġ200": 433,
|
477 |
+
"Ġun": 434,
|
478 |
+
"ous": 435,
|
479 |
+
"irst": 436,
|
480 |
+
"ĠV": 437,
|
481 |
+
"cc": 438,
|
482 |
+
"Ġinc": 439,
|
483 |
+
"Ġ;": 440,
|
484 |
+
"Ġcomp": 441,
|
485 |
+
"ru": 442,
|
486 |
+
"ions": 443,
|
487 |
+
"Ġtheir": 444,
|
488 |
+
"Ġbut": 445,
|
489 |
+
"ide": 446,
|
490 |
+
"ure": 447,
|
491 |
+
"so": 448,
|
492 |
+
"Ġcont": 449,
|
493 |
+
"Ġint": 450,
|
494 |
+
"fter": 451,
|
495 |
+
"ical": 452,
|
496 |
+
"ial": 453,
|
497 |
+
"Ġar": 454,
|
498 |
+
"Ġfirst": 455,
|
499 |
+
"ould": 456,
|
500 |
+
"Ġits": 457,
|
501 |
+
"hed": 458,
|
502 |
+
"ĠâĢĵ": 459,
|
503 |
+
"Ġwhe": 460,
|
504 |
+
"wo": 461,
|
505 |
+
"out": 462,
|
506 |
+
"ub": 463,
|
507 |
+
"Ġ20": 464,
|
508 |
+
"ff": 465,
|
509 |
+
"Ġ:": 466,
|
510 |
+
"ue": 467,
|
511 |
+
"Ġher": 468,
|
512 |
+
"own": 469,
|
513 |
+
"ok": 470,
|
514 |
+
"Ġalso": 471,
|
515 |
+
"Ġcl": 472,
|
516 |
+
"per": 473,
|
517 |
+
"ign": 474,
|
518 |
+
"ater": 475,
|
519 |
+
"ran": 476,
|
520 |
+
"orm": 477,
|
521 |
+
"ie": 478,
|
522 |
+
"ome": 479,
|
523 |
+
"ork": 480,
|
524 |
+
"ass": 481,
|
525 |
+
"ire": 482,
|
526 |
+
"end": 483,
|
527 |
+
"Ġres": 484,
|
528 |
+
"Ġab": 485,
|
529 |
+
"Ġad": 486,
|
530 |
+
"Ġus": 487,
|
531 |
+
"ry": 488,
|
532 |
+
"Ġrec": 489,
|
533 |
+
"Ġhave": 490,
|
534 |
+
"age": 491,
|
535 |
+
"ĠHe": 492,
|
536 |
+
"Ġ4": 493,
|
537 |
+
"Ġro": 494,
|
538 |
+
"mer": 495,
|
539 |
+
"Ġone": 496,
|
540 |
+
"ond": 497,
|
541 |
+
"low": 498,
|
542 |
+
"Ġhas": 499,
|
543 |
+
"ĠTh": 500,
|
544 |
+
"du": 501,
|
545 |
+
"Ġ5": 502,
|
546 |
+
"Ġper": 503,
|
547 |
+
"Ġbeen": 504,
|
548 |
+
"ime": 505,
|
549 |
+
"Ġtwo": 506,
|
550 |
+
"ence": 507,
|
551 |
+
"land": 508,
|
552 |
+
"Ġ18": 509,
|
553 |
+
".@": 510,
|
554 |
+
"Ġ@.@": 511,
|
555 |
+
"ult": 512,
|
556 |
+
"ree": 513,
|
557 |
+
"ough": 514,
|
558 |
+
"ile": 515,
|
559 |
+
"Ġwho": 516,
|
560 |
+
"ĠAl": 517,
|
561 |
+
"Ġsc": 518,
|
562 |
+
"uring": 519,
|
563 |
+
"pl": 520,
|
564 |
+
"ory": 521,
|
565 |
+
"ition": 522,
|
566 |
+
"ric": 523,
|
567 |
+
"ations": 524,
|
568 |
+
"Ġdis": 525,
|
569 |
+
"Ġthis": 526,
|
570 |
+
"Ġbec": 527,
|
571 |
+
"Ġapp": 528,
|
572 |
+
"iz": 529,
|
573 |
+
"ĠIt": 530,
|
574 |
+
"are": 531,
|
575 |
+
"ach": 532,
|
576 |
+
"lud": 533,
|
577 |
+
"ade": 534,
|
578 |
+
"Ġplay": 535,
|
579 |
+
"Ġj": 536,
|
580 |
+
"Ġman": 537,
|
581 |
+
"act": 538,
|
582 |
+
"ely": 539,
|
583 |
+
"Ġpart": 540,
|
584 |
+
"Ġdes": 541,
|
585 |
+
"Ġag": 542,
|
586 |
+
"Ġthey": 543,
|
587 |
+
"Ġyear": 544,
|
588 |
+
"ount": 545,
|
589 |
+
"Ġ201": 546,
|
590 |
+
"Ġover": 547,
|
591 |
+
"Ġother": 548,
|
592 |
+
"ound": 549,
|
593 |
+
"Ġafter": 550,
|
594 |
+
"ib": 551,
|
595 |
+
"over": 552,
|
596 |
+
"Ġser": 553,
|
597 |
+
"Ġen": 554,
|
598 |
+
"Ġoff": 555,
|
599 |
+
"Ġim": 556,
|
600 |
+
"ction": 557,
|
601 |
+
"ĠY": 558,
|
602 |
+
"ke": 559,
|
603 |
+
"ite": 560,
|
604 |
+
",@": 561,
|
605 |
+
"Ġ@,@": 562,
|
606 |
+
"te": 563,
|
607 |
+
"urn": 564,
|
608 |
+
"Ġinclud": 565,
|
609 |
+
"ress": 566,
|
610 |
+
"ance": 567,
|
611 |
+
"ang": 568,
|
612 |
+
"Ġatt": 569,
|
613 |
+
"ice": 570,
|
614 |
+
"ace": 571,
|
615 |
+
"ark": 572,
|
616 |
+
"Ġout": 573,
|
617 |
+
"wn": 574,
|
618 |
+
"ph": 575,
|
619 |
+
"ember": 576,
|
620 |
+
"Ġpre": 577,
|
621 |
+
"Ġup": 578,
|
622 |
+
"ens": 579,
|
623 |
+
"man": 580,
|
624 |
+
"Ġev": 581,
|
625 |
+
"Ġtime": 582,
|
626 |
+
"nder": 583,
|
627 |
+
"rough": 584,
|
628 |
+
"ced": 585,
|
629 |
+
"Ġfin": 586,
|
630 |
+
"Ġinto": 587,
|
631 |
+
"one": 588,
|
632 |
+
"port": 589,
|
633 |
+
"round": 590,
|
634 |
+
"we": 591,
|
635 |
+
"ren": 592,
|
636 |
+
"les": 593,
|
637 |
+
"int": 594,
|
638 |
+
"ĠOn": 595,
|
639 |
+
"vel": 596,
|
640 |
+
"Ġcomm": 597,
|
641 |
+
"Ġshe": 598,
|
642 |
+
"ason": 599,
|
643 |
+
"amp": 600,
|
644 |
+
"Ġte": 601,
|
645 |
+
"Ġwould": 602,
|
646 |
+
"ward": 603,
|
647 |
+
"Ġmore": 604,
|
648 |
+
"Ġ6": 605,
|
649 |
+
"ied": 606,
|
650 |
+
"ose": 607,
|
651 |
+
"rib": 608,
|
652 |
+
"ĠUn": 609,
|
653 |
+
"Ġall": 610,
|
654 |
+
"ings": 611,
|
655 |
+
"tern": 612,
|
656 |
+
"ces": 613,
|
657 |
+
"able": 614,
|
658 |
+
"Ġwe": 615,
|
659 |
+
"ited": 616,
|
660 |
+
"ever": 617,
|
661 |
+
"ents": 618,
|
662 |
+
"Ġhim": 619,
|
663 |
+
"ased": 620,
|
664 |
+
"ors": 621,
|
665 |
+
"oy": 622,
|
666 |
+
"ood": 623,
|
667 |
+
"Ġcent": 624,
|
668 |
+
"ix": 625,
|
669 |
+
"ase": 626,
|
670 |
+
"ild": 627,
|
671 |
+
"ĠAn": 628,
|
672 |
+
"Ġ7": 629,
|
673 |
+
"Ġwork": 630,
|
674 |
+
"ates": 631,
|
675 |
+
"ious": 632,
|
676 |
+
"ath": 633,
|
677 |
+
"Ġpo": 634,
|
678 |
+
"rop": 635,
|
679 |
+
"old": 636,
|
680 |
+
"als": 637,
|
681 |
+
"iss": 638,
|
682 |
+
"ey": 639,
|
683 |
+
"ict": 640,
|
684 |
+
"Ġfe": 641,
|
685 |
+
"Ġthem": 642,
|
686 |
+
"gan": 643,
|
687 |
+
"Ġsec": 644,
|
688 |
+
"Ġbet": 645,
|
689 |
+
"Ġwhen": 646,
|
690 |
+
"Ġsong": 647,
|
691 |
+
"Ġrem": 648,
|
692 |
+
"ep": 649,
|
693 |
+
"form": 650,
|
694 |
+
"ail": 651,
|
695 |
+
"fer": 652,
|
696 |
+
"Ġear": 653,
|
697 |
+
"ubl": 654,
|
698 |
+
"aw": 655,
|
699 |
+
"Ġkn": 656,
|
700 |
+
"ake": 657,
|
701 |
+
"aus": 658,
|
702 |
+
"Ġmost": 659,
|
703 |
+
"Ġcons": 660,
|
704 |
+
"Ġduring": 661,
|
705 |
+
"ĠAs": 662,
|
706 |
+
"orth": 663,
|
707 |
+
"Ġnew": 664,
|
708 |
+
"ered": 665,
|
709 |
+
"ilm": 666,
|
710 |
+
"ved": 667,
|
711 |
+
"att": 668,
|
712 |
+
"Ġonly": 669,
|
713 |
+
"Ġ9": 670,
|
714 |
+
"Ġdec": 671,
|
715 |
+
"Ġ8": 672,
|
716 |
+
"ick": 673,
|
717 |
+
"Ġgame": 674,
|
718 |
+
"ons": 675,
|
719 |
+
"ug": 676,
|
720 |
+
"Ġtr": 677,
|
721 |
+
"ft": 678,
|
722 |
+
"oth": 679,
|
723 |
+
"ook": 680,
|
724 |
+
"ĠMar": 681,
|
725 |
+
"reat": 682,
|
726 |
+
"way": 683,
|
727 |
+
"Ġcan": 684,
|
728 |
+
"ollow": 685,
|
729 |
+
"outh": 686,
|
730 |
+
"ween": 687,
|
731 |
+
"ĠEn": 688,
|
732 |
+
"Ġ199": 689,
|
733 |
+
"ters": 690,
|
734 |
+
"Ġrel": 691,
|
735 |
+
"ind": 692,
|
736 |
+
"Ġabout": 693,
|
737 |
+
"Ġseason": 694,
|
738 |
+
"Ġagain": 695,
|
739 |
+
"ral": 696,
|
740 |
+
"Ġthree": 697,
|
741 |
+
"ational": 698,
|
742 |
+
"Ġunder": 699,
|
743 |
+
"ular": 700,
|
744 |
+
"Ġme": 701,
|
745 |
+
"Ġthan": 702,
|
746 |
+
"ĠCom": 703,
|
747 |
+
"ĠAr": 704,
|
748 |
+
"hip": 705,
|
749 |
+
"ob": 706,
|
750 |
+
"Ġne": 707,
|
751 |
+
"Ġbetween": 708,
|
752 |
+
"Ġfl": 709,
|
753 |
+
"hn": 710,
|
754 |
+
"ve": 711,
|
755 |
+
"Ġchar": 712,
|
756 |
+
"Ġcol": 713,
|
757 |
+
"Ġrecord": 714,
|
758 |
+
"iew": 715,
|
759 |
+
"ron": 716,
|
760 |
+
"fore": 717,
|
761 |
+
"Ġthrough": 718,
|
762 |
+
"ision": 719,
|
763 |
+
"orn": 720,
|
764 |
+
"Ġ00": 721,
|
765 |
+
"ock": 722,
|
766 |
+
"Ġver": 723,
|
767 |
+
"Ġlater": 724,
|
768 |
+
"Ġnum": 725,
|
769 |
+
"Ġend": 726,
|
770 |
+
"olog": 727,
|
771 |
+
"ames": 728,
|
772 |
+
"Ġpos": 729,
|
773 |
+
"Ġwrit": 730,
|
774 |
+
"Ġprodu": 731,
|
775 |
+
"Ġwhile": 732,
|
776 |
+
"Ġact": 733,
|
777 |
+
"Ġrele": 734,
|
778 |
+
"Ġfilm": 735,
|
779 |
+
"ished": 736,
|
780 |
+
"Ġpr": 737,
|
781 |
+
"ans": 738,
|
782 |
+
"Ġreg": 739,
|
783 |
+
"Ġform": 740,
|
784 |
+
"Ġass": 741,
|
785 |
+
"ĠSe": 742,
|
786 |
+
"ury": 743,
|
787 |
+
"ted": 744,
|
788 |
+
"ts": 745,
|
789 |
+
"Ġmade": 746,
|
790 |
+
"Ġsub": 747,
|
791 |
+
"Ġpe": 748,
|
792 |
+
"Ġso": 749,
|
793 |
+
"orld": 750,
|
794 |
+
"Ġret": 751,
|
795 |
+
"ĠNew": 752,
|
796 |
+
"Ġspec": 753,
|
797 |
+
"Ġacc": 754,
|
798 |
+
"Ġqu": 755,
|
799 |
+
"Ġwhere": 756,
|
800 |
+
"ener": 757,
|
801 |
+
"Ġmov": 758,
|
802 |
+
"hes": 759,
|
803 |
+
"meric": 760,
|
804 |
+
"ating": 761,
|
805 |
+
"Ġinter": 762,
|
806 |
+
"ĠLe": 763,
|
807 |
+
"ĠAmeric": 764,
|
808 |
+
"Ġra": 765,
|
809 |
+
"Ġsome": 766,
|
810 |
+
"Ġco": 767,
|
811 |
+
"Ġlar": 768,
|
812 |
+
"Ġbu": 769,
|
813 |
+
"Ġdef": 770,
|
814 |
+
"bum": 771,
|
815 |
+
"Ġac": 772,
|
816 |
+
"Ġmus": 773,
|
817 |
+
"Ġfollow": 774,
|
818 |
+
"ĠAt": 775,
|
819 |
+
"ins": 776,
|
820 |
+
"ived": 777,
|
821 |
+
"ific": 778,
|
822 |
+
"ual": 779,
|
823 |
+
"Ġam": 780,
|
824 |
+
"Ġsuch": 781,
|
825 |
+
"Ġsecond": 782,
|
826 |
+
"ike": 783,
|
827 |
+
"Ġfour": 784,
|
828 |
+
"Ġind": 785,
|
829 |
+
"ann": 786,
|
830 |
+
"hen": 787,
|
831 |
+
"Ġused": 788,
|
832 |
+
"ĠRe": 789,
|
833 |
+
"ics": 790,
|
834 |
+
"lect": 791,
|
835 |
+
"Ġday": 792,
|
836 |
+
"iel": 793,
|
837 |
+
"ily": 794,
|
838 |
+
"ĠThis": 795,
|
839 |
+
"Ġ0": 796,
|
840 |
+
"Ġpubl": 797,
|
841 |
+
"Ġcall": 798,
|
842 |
+
"ĠJo": 799,
|
843 |
+
"ll": 800,
|
844 |
+
"Ġalbum": 801,
|
845 |
+
"Ġ000": 802,
|
846 |
+
"rans": 803,
|
847 |
+
"Ġdo": 804,
|
848 |
+
"any": 805,
|
849 |
+
"Ġbefore": 806,
|
850 |
+
"ros": 807,
|
851 |
+
"ĠSh": 808,
|
852 |
+
"Ġsy": 809,
|
853 |
+
"aid": 810,
|
854 |
+
"ĠEng": 811,
|
855 |
+
"Ġbeing": 812,
|
856 |
+
"Ġ10": 813,
|
857 |
+
"uc": 814,
|
858 |
+
"Ġep": 815,
|
859 |
+
"Ġsupp": 816,
|
860 |
+
"Ġthere": 817,
|
861 |
+
"Ġyears": 818,
|
862 |
+
"ars": 819,
|
863 |
+
"owever": 820,
|
864 |
+
"Ġent": 821,
|
865 |
+
"ife": 822,
|
866 |
+
"Ġhigh": 823,
|
867 |
+
"Ġfound": 824,
|
868 |
+
"ird": 825,
|
869 |
+
"Ġno": 826,
|
870 |
+
"Ġset": 827,
|
871 |
+
"ines": 828,
|
872 |
+
"iver": 829,
|
873 |
+
"io": 830,
|
874 |
+
"other": 831,
|
875 |
+
"ject": 832,
|
876 |
+
"Ġsur": 833,
|
877 |
+
"aj": 834,
|
878 |
+
"ten": 835,
|
879 |
+
"Ġtra": 836,
|
880 |
+
"Ġ12": 837,
|
881 |
+
"ised": 838,
|
882 |
+
"ities": 839,
|
883 |
+
"velop": 840,
|
884 |
+
"Ġbl": 841,
|
885 |
+
"ale": 842,
|
886 |
+
"Ġseries": 843,
|
887 |
+
"Ġloc": 844,
|
888 |
+
"Ġnumber": 845,
|
889 |
+
"Ġpres": 846,
|
890 |
+
"ane": 847,
|
891 |
+
"ause": 848,
|
892 |
+
"ode": 849,
|
893 |
+
"ek": 850,
|
894 |
+
"ton": 851,
|
895 |
+
"ĠSc": 852,
|
896 |
+
"ier": 853,
|
897 |
+
"ise": 854,
|
898 |
+
"Ġsever": 855,
|
899 |
+
"ince": 856,
|
900 |
+
"Ġboth": 857,
|
901 |
+
"ank": 858,
|
902 |
+
"row": 859,
|
903 |
+
"irect": 860,
|
904 |
+
"son": 861,
|
905 |
+
"Ġthen": 862,
|
906 |
+
"ĠBrit": 863,
|
907 |
+
"iet": 864,
|
908 |
+
"Ġ16": 865,
|
909 |
+
"Ġepis": 866,
|
910 |
+
"Ġincluding": 867,
|
911 |
+
"its": 868,
|
912 |
+
"igin": 869,
|
913 |
+
"pr": 870,
|
914 |
+
"Ġ/": 871,
|
915 |
+
"Ġagainst": 872,
|
916 |
+
"Ġwell": 873,
|
917 |
+
"Ġbecame": 874,
|
918 |
+
"Ġexp": 875,
|
919 |
+
"Ġknown": 876,
|
920 |
+
"Ġtrans": 877,
|
921 |
+
"Ġcharac": 878,
|
922 |
+
"ĠâĢĶ": 879,
|
923 |
+
"ram": 880,
|
924 |
+
"Ġback": 881,
|
925 |
+
"Ġadd": 882,
|
926 |
+
"Ġpop": 883,
|
927 |
+
"Ġgo": 884,
|
928 |
+
"urch": 885,
|
929 |
+
"Ġdesc": 886,
|
930 |
+
"Ġsing": 887,
|
931 |
+
"ield": 888,
|
932 |
+
"Ġperform": 889,
|
933 |
+
"ained": 890,
|
934 |
+
"Ġrece": 891,
|
935 |
+
"ident": 892,
|
936 |
+
"Ġem": 893,
|
937 |
+
"ert": 894,
|
938 |
+
"ures": 895,
|
939 |
+
"Ġinv": 896,
|
940 |
+
"Ġdep": 897,
|
941 |
+
"Ġ198": 898,
|
942 |
+
"air": 899,
|
943 |
+
"ern": 900,
|
944 |
+
"ather": 901,
|
945 |
+
"ful": 902,
|
946 |
+
"ĠZ": 903,
|
947 |
+
"Ġmon": 904,
|
948 |
+
"Ġmany": 905,
|
949 |
+
"Ġmain": 906,
|
950 |
+
"Ġstud": 907,
|
951 |
+
"Ġlong": 908,
|
952 |
+
"inn": 909,
|
953 |
+
"though": 910,
|
954 |
+
"up": 911,
|
955 |
+
"ool": 912,
|
956 |
+
"ĠUnited": 913,
|
957 |
+
"led": 914,
|
958 |
+
"ement": 915,
|
959 |
+
"Ġ15": 916,
|
960 |
+
"ower": 917,
|
961 |
+
"ĠJohn": 918,
|
962 |
+
"Ġop": 919,
|
963 |
+
"Ġ11": 920,
|
964 |
+
"ined": 921,
|
965 |
+
"Ġmet": 922,
|
966 |
+
"ober": 923,
|
967 |
+
"ley": 924,
|
968 |
+
"Ġ17": 925,
|
969 |
+
"Ġcentury": 926,
|
970 |
+
"Ġteam": 927,
|
971 |
+
"Ġest": 928,
|
972 |
+
"ĠAfter": 929,
|
973 |
+
"yl": 930,
|
974 |
+
"Ġmin": 931,
|
975 |
+
"uch": 932,
|
976 |
+
"ute": 933,
|
977 |
+
"Ġdevelop": 934,
|
978 |
+
"ĠShe": 935,
|
979 |
+
"iam": 936,
|
980 |
+
"Ġshow": 937,
|
981 |
+
"elf": 938,
|
982 |
+
"Ġrep": 939,
|
983 |
+
"Ġconc": 940,
|
984 |
+
"ative": 941,
|
985 |
+
"Ġcre": 942,
|
986 |
+
"overn": 943,
|
987 |
+
"ared": 944,
|
988 |
+
"Ġ194": 945,
|
989 |
+
"Ġorigin": 946,
|
990 |
+
"Ġsm": 947,
|
991 |
+
"ivers": 948,
|
992 |
+
"az": 949,
|
993 |
+
"Ġlead": 950,
|
994 |
+
"Ġseveral": 951,
|
995 |
+
"ah": 952,
|
996 |
+
"Ġob": 953,
|
997 |
+
"Ġrev": 954,
|
998 |
+
"Ġmill": 955,
|
999 |
+
"erm": 956,
|
1000 |
+
"ually": 957,
|
1001 |
+
"oot": 958,
|
1002 |
+
"Ġbegan": 959,
|
1003 |
+
"Ġ196": 960,
|
1004 |
+
"ired": 961,
|
1005 |
+
"Ġdif": 962,
|
1006 |
+
"Ġcontin": 963,
|
1007 |
+
"Ġsign": 964,
|
1008 |
+
"ik": 965,
|
1009 |
+
"ĠInd": 966,
|
1010 |
+
"ments": 967,
|
1011 |
+
"ized": 968,
|
1012 |
+
"Ġ197": 969,
|
1013 |
+
"Ġdirect": 970,
|
1014 |
+
"au": 971,
|
1015 |
+
"Ġext": 972,
|
1016 |
+
"ross": 973,
|
1017 |
+
"emb": 974,
|
1018 |
+
"der": 975,
|
1019 |
+
"Ġpol": 976,
|
1020 |
+
"Ġmay": 977,
|
1021 |
+
"apt": 978,
|
1022 |
+
"els": 979,
|
1023 |
+
"ĠWh": 980,
|
1024 |
+
"Ġcomple": 981,
|
1025 |
+
"Ġart": 982,
|
1026 |
+
"ĠBr": 983,
|
1027 |
+
"ĠIs": 984,
|
1028 |
+
"une": 985,
|
1029 |
+
"til": 986,
|
1030 |
+
"Ġcrit": 987,
|
1031 |
+
"Ġhist": 988,
|
1032 |
+
"Ġearly": 989,
|
1033 |
+
"Ġcould": 990,
|
1034 |
+
"ĠCon": 991,
|
1035 |
+
"Ġdid": 992,
|
1036 |
+
"Ġbel": 993,
|
1037 |
+
"Ġcalled": 994,
|
1038 |
+
"ued": 995,
|
1039 |
+
"Ġnear": 996,
|
1040 |
+
"Ġepisode": 997,
|
1041 |
+
"yp": 998,
|
1042 |
+
"Ġdescrib": 999
|
1043 |
+
},
|
1044 |
+
"merges": [
|
1045 |
+
"Ġ t",
|
1046 |
+
"h e",
|
1047 |
+
"Ġ a",
|
1048 |
+
"i n",
|
1049 |
+
"Ġt he",
|
1050 |
+
"e r",
|
1051 |
+
"o n",
|
1052 |
+
"Ġ ,",
|
1053 |
+
"r e",
|
1054 |
+
"Ġ s",
|
1055 |
+
"e d",
|
1056 |
+
"Ġ o",
|
1057 |
+
"Ġ w",
|
1058 |
+
"n d",
|
1059 |
+
"a t",
|
1060 |
+
"Ġ .",
|
1061 |
+
"o r",
|
1062 |
+
"i t",
|
1063 |
+
"Ġ c",
|
1064 |
+
"e n",
|
1065 |
+
"Ġ f",
|
1066 |
+
"i s",
|
1067 |
+
"e s",
|
1068 |
+
"a r",
|
1069 |
+
"Ġo f",
|
1070 |
+
"Ġ b",
|
1071 |
+
"a n",
|
1072 |
+
"Ġ in",
|
1073 |
+
"a l",
|
1074 |
+
"in g",
|
1075 |
+
"Ġ p",
|
1076 |
+
"Ġa nd",
|
1077 |
+
"a s",
|
1078 |
+
"Ġt o",
|
1079 |
+
"r o",
|
1080 |
+
"i c",
|
1081 |
+
"Ġ m",
|
1082 |
+
"Ġ d",
|
1083 |
+
"Ġ h",
|
1084 |
+
"i on",
|
1085 |
+
"l e",
|
1086 |
+
"o u",
|
1087 |
+
"Ġ T",
|
1088 |
+
"Ġ re",
|
1089 |
+
"Ġ =",
|
1090 |
+
"Ġ \"",
|
1091 |
+
"Ġ A",
|
1092 |
+
"Ġ S",
|
1093 |
+
"en t",
|
1094 |
+
"i l",
|
1095 |
+
"Ġt h",
|
1096 |
+
"Ġ 1",
|
1097 |
+
"s t",
|
1098 |
+
"Ġ C",
|
1099 |
+
"e l",
|
1100 |
+
"o m",
|
1101 |
+
"Ġ l",
|
1102 |
+
"a m",
|
1103 |
+
"Ġ Ċ",
|
1104 |
+
"Ġ e",
|
1105 |
+
"Ġ n",
|
1106 |
+
"Ġ @",
|
1107 |
+
"a d",
|
1108 |
+
"a c",
|
1109 |
+
"Ġw as",
|
1110 |
+
"Ġ M",
|
1111 |
+
"u r",
|
1112 |
+
"ĠT he",
|
1113 |
+
"e c",
|
1114 |
+
"Ġ on",
|
1115 |
+
"l y",
|
1116 |
+
"Ġ B",
|
1117 |
+
"Ġ I",
|
1118 |
+
"Ġ g",
|
1119 |
+
"Ġ '",
|
1120 |
+
"e t",
|
1121 |
+
"o l",
|
1122 |
+
"i d",
|
1123 |
+
"i v",
|
1124 |
+
"i m",
|
1125 |
+
"Ġf or",
|
1126 |
+
"i r",
|
1127 |
+
"- @",
|
1128 |
+
"Ġ@ -@",
|
1129 |
+
"i g",
|
1130 |
+
"o t",
|
1131 |
+
"t er",
|
1132 |
+
"Ġa s",
|
1133 |
+
"Ġ H",
|
1134 |
+
"u s",
|
1135 |
+
"o w",
|
1136 |
+
"Ġs t",
|
1137 |
+
"u t",
|
1138 |
+
"it h",
|
1139 |
+
"a y",
|
1140 |
+
"Ġ 2",
|
1141 |
+
"Ġ P",
|
1142 |
+
"at ion",
|
1143 |
+
"v er",
|
1144 |
+
"Ġb e",
|
1145 |
+
"he r",
|
1146 |
+
"Ġth at",
|
1147 |
+
"Ġw ith",
|
1148 |
+
"Ġ R",
|
1149 |
+
"c e",
|
1150 |
+
"t h",
|
1151 |
+
"Ġ D",
|
1152 |
+
"Ġ is",
|
1153 |
+
"u n",
|
1154 |
+
"e m",
|
1155 |
+
"Ġ F",
|
1156 |
+
"Ġw h",
|
1157 |
+
"u l",
|
1158 |
+
"Ġb y",
|
1159 |
+
"Ġa l",
|
1160 |
+
"c h",
|
1161 |
+
"Ġ )",
|
1162 |
+
"Ġ (",
|
1163 |
+
"Ġ W",
|
1164 |
+
"Ġc on",
|
1165 |
+
"r a",
|
1166 |
+
"Ġ G",
|
1167 |
+
"o s",
|
1168 |
+
"Ġ L",
|
1169 |
+
"Ġ N",
|
1170 |
+
"Ġa t",
|
1171 |
+
"er s",
|
1172 |
+
"c t",
|
1173 |
+
"Ġ it",
|
1174 |
+
"Ġ1 9",
|
1175 |
+
"ro m",
|
1176 |
+
"a nd",
|
1177 |
+
"Ġa n",
|
1178 |
+
"u m",
|
1179 |
+
"es t",
|
1180 |
+
"Ġ J",
|
1181 |
+
"a g",
|
1182 |
+
"Ġ he",
|
1183 |
+
"0 0",
|
1184 |
+
"is t",
|
1185 |
+
"a in",
|
1186 |
+
"o d",
|
1187 |
+
"a v",
|
1188 |
+
"r i",
|
1189 |
+
"Ġ E",
|
1190 |
+
"Ġ O",
|
1191 |
+
"Ġf rom",
|
1192 |
+
"Ġc om",
|
1193 |
+
"Ġh is",
|
1194 |
+
"o p",
|
1195 |
+
"Ġp ro",
|
1196 |
+
"re s",
|
1197 |
+
"i es",
|
1198 |
+
"i f",
|
1199 |
+
"Ġ v",
|
1200 |
+
"or t",
|
1201 |
+
"er e",
|
1202 |
+
"il l",
|
1203 |
+
"l d",
|
1204 |
+
"Ġd e",
|
1205 |
+
"p p",
|
1206 |
+
"Ġs u",
|
1207 |
+
"o re",
|
1208 |
+
"ĠI n",
|
1209 |
+
"Ġ r",
|
1210 |
+
"Ġs e",
|
1211 |
+
"Ġw ere",
|
1212 |
+
"e w",
|
1213 |
+
"on g",
|
1214 |
+
"ig h",
|
1215 |
+
"ar d",
|
1216 |
+
"at e",
|
1217 |
+
"al l",
|
1218 |
+
"ar t",
|
1219 |
+
"a k",
|
1220 |
+
"ic h",
|
1221 |
+
"Ġc h",
|
1222 |
+
"Ġo r",
|
1223 |
+
"a b",
|
1224 |
+
"an t",
|
1225 |
+
"u d",
|
1226 |
+
"o c",
|
1227 |
+
"b er",
|
1228 |
+
"Ġe x",
|
1229 |
+
"g h",
|
1230 |
+
"it y",
|
1231 |
+
"at ed",
|
1232 |
+
"p t",
|
1233 |
+
"es s",
|
1234 |
+
"e ar",
|
1235 |
+
"Ġ K",
|
1236 |
+
"Ġp l",
|
1237 |
+
"am e",
|
1238 |
+
"q u",
|
1239 |
+
"iv e",
|
1240 |
+
"ro u",
|
1241 |
+
"Ġa re",
|
1242 |
+
"Ġ â",
|
1243 |
+
"Ġs h",
|
1244 |
+
"Ġ k",
|
1245 |
+
"ac k",
|
1246 |
+
"ec t",
|
1247 |
+
"Ġâ Ģ",
|
1248 |
+
"Ġ U",
|
1249 |
+
"Ġh ad",
|
1250 |
+
"s e",
|
1251 |
+
"Ġwh ich",
|
1252 |
+
"re d",
|
1253 |
+
"o v",
|
1254 |
+
"ĠS t",
|
1255 |
+
"as t",
|
1256 |
+
"Ġs p",
|
1257 |
+
"i an",
|
1258 |
+
"Ġ y",
|
1259 |
+
"m ent",
|
1260 |
+
"Ġ le",
|
1261 |
+
"Ġn ot",
|
1262 |
+
"g e",
|
1263 |
+
"or d",
|
1264 |
+
"r it",
|
1265 |
+
"i p",
|
1266 |
+
"in e",
|
1267 |
+
"el l",
|
1268 |
+
"al ly",
|
1269 |
+
"ou r",
|
1270 |
+
"o st",
|
1271 |
+
"igh t",
|
1272 |
+
"t her",
|
1273 |
+
"a p",
|
1274 |
+
"Ġ u",
|
1275 |
+
"is h",
|
1276 |
+
"ĠC h",
|
1277 |
+
"ou n",
|
1278 |
+
"i a",
|
1279 |
+
"Ġ 3",
|
1280 |
+
"av e",
|
1281 |
+
"ar y",
|
1282 |
+
"u st",
|
1283 |
+
"o g",
|
1284 |
+
"Ġ2 00",
|
1285 |
+
"Ġ un",
|
1286 |
+
"ou s",
|
1287 |
+
"ir st",
|
1288 |
+
"Ġ V",
|
1289 |
+
"c c",
|
1290 |
+
"Ġin c",
|
1291 |
+
"Ġ ;",
|
1292 |
+
"Ġcom p",
|
1293 |
+
"r u",
|
1294 |
+
"ion s",
|
1295 |
+
"Ġthe ir",
|
1296 |
+
"Ġb ut",
|
1297 |
+
"id e",
|
1298 |
+
"u re",
|
1299 |
+
"s o",
|
1300 |
+
"Ġcon t",
|
1301 |
+
"Ġin t",
|
1302 |
+
"f ter",
|
1303 |
+
"ic al",
|
1304 |
+
"i al",
|
1305 |
+
"Ġa r",
|
1306 |
+
"Ġf irst",
|
1307 |
+
"ou ld",
|
1308 |
+
"Ġit s",
|
1309 |
+
"he d",
|
1310 |
+
"ĠâĢ ĵ",
|
1311 |
+
"Ġw he",
|
1312 |
+
"w o",
|
1313 |
+
"ou t",
|
1314 |
+
"u b",
|
1315 |
+
"Ġ2 0",
|
1316 |
+
"f f",
|
1317 |
+
"Ġ :",
|
1318 |
+
"u e",
|
1319 |
+
"Ġ her",
|
1320 |
+
"ow n",
|
1321 |
+
"o k",
|
1322 |
+
"Ġal so",
|
1323 |
+
"Ġc l",
|
1324 |
+
"p er",
|
1325 |
+
"ig n",
|
1326 |
+
"at er",
|
1327 |
+
"r an",
|
1328 |
+
"or m",
|
1329 |
+
"i e",
|
1330 |
+
"om e",
|
1331 |
+
"or k",
|
1332 |
+
"as s",
|
1333 |
+
"i re",
|
1334 |
+
"e nd",
|
1335 |
+
"Ġre s",
|
1336 |
+
"Ġa b",
|
1337 |
+
"Ġa d",
|
1338 |
+
"Ġ us",
|
1339 |
+
"r y",
|
1340 |
+
"Ġre c",
|
1341 |
+
"Ġh ave",
|
1342 |
+
"ag e",
|
1343 |
+
"ĠH e",
|
1344 |
+
"Ġ 4",
|
1345 |
+
"Ġ ro",
|
1346 |
+
"m er",
|
1347 |
+
"Ġon e",
|
1348 |
+
"on d",
|
1349 |
+
"l ow",
|
1350 |
+
"Ġh as",
|
1351 |
+
"ĠT h",
|
1352 |
+
"d u",
|
1353 |
+
"Ġ 5",
|
1354 |
+
"Ġp er",
|
1355 |
+
"Ġbe en",
|
1356 |
+
"im e",
|
1357 |
+
"Ġt wo",
|
1358 |
+
"en ce",
|
1359 |
+
"l and",
|
1360 |
+
"Ġ1 8",
|
1361 |
+
". @",
|
1362 |
+
"Ġ@ .@",
|
1363 |
+
"ul t",
|
1364 |
+
"re e",
|
1365 |
+
"ou gh",
|
1366 |
+
"i le",
|
1367 |
+
"Ġwh o",
|
1368 |
+
"ĠA l",
|
1369 |
+
"Ġs c",
|
1370 |
+
"ur ing",
|
1371 |
+
"p l",
|
1372 |
+
"or y",
|
1373 |
+
"it ion",
|
1374 |
+
"r ic",
|
1375 |
+
"ation s",
|
1376 |
+
"Ġd is",
|
1377 |
+
"Ġth is",
|
1378 |
+
"Ġb ec",
|
1379 |
+
"Ġa pp",
|
1380 |
+
"i z",
|
1381 |
+
"ĠI t",
|
1382 |
+
"a re",
|
1383 |
+
"ac h",
|
1384 |
+
"l ud",
|
1385 |
+
"ad e",
|
1386 |
+
"Ġpl ay",
|
1387 |
+
"Ġ j",
|
1388 |
+
"Ġm an",
|
1389 |
+
"ac t",
|
1390 |
+
"el y",
|
1391 |
+
"Ġp art",
|
1392 |
+
"Ġd es",
|
1393 |
+
"Ġa g",
|
1394 |
+
"Ġthe y",
|
1395 |
+
"Ġy ear",
|
1396 |
+
"oun t",
|
1397 |
+
"Ġ20 1",
|
1398 |
+
"Ġo ver",
|
1399 |
+
"Ġo ther",
|
1400 |
+
"ou nd",
|
1401 |
+
"Ġa fter",
|
1402 |
+
"i b",
|
1403 |
+
"o ver",
|
1404 |
+
"Ġs er",
|
1405 |
+
"Ġ en",
|
1406 |
+
"Ġof f",
|
1407 |
+
"Ġ im",
|
1408 |
+
"ct ion",
|
1409 |
+
"Ġ Y",
|
1410 |
+
"k e",
|
1411 |
+
"it e",
|
1412 |
+
", @",
|
1413 |
+
"Ġ@ ,@",
|
1414 |
+
"t e",
|
1415 |
+
"ur n",
|
1416 |
+
"Ġinc lud",
|
1417 |
+
"res s",
|
1418 |
+
"an ce",
|
1419 |
+
"an g",
|
1420 |
+
"Ġat t",
|
1421 |
+
"ic e",
|
1422 |
+
"ac e",
|
1423 |
+
"ar k",
|
1424 |
+
"Ġo ut",
|
1425 |
+
"w n",
|
1426 |
+
"p h",
|
1427 |
+
"em ber",
|
1428 |
+
"Ġp re",
|
1429 |
+
"Ġu p",
|
1430 |
+
"en s",
|
1431 |
+
"m an",
|
1432 |
+
"Ġe v",
|
1433 |
+
"Ġt ime",
|
1434 |
+
"nd er",
|
1435 |
+
"rou gh",
|
1436 |
+
"c ed",
|
1437 |
+
"Ġf in",
|
1438 |
+
"Ġint o",
|
1439 |
+
"on e",
|
1440 |
+
"p ort",
|
1441 |
+
"rou nd",
|
1442 |
+
"w e",
|
1443 |
+
"re n",
|
1444 |
+
"l es",
|
1445 |
+
"in t",
|
1446 |
+
"ĠO n",
|
1447 |
+
"v el",
|
1448 |
+
"Ġcom m",
|
1449 |
+
"Ġs he",
|
1450 |
+
"as on",
|
1451 |
+
"am p",
|
1452 |
+
"Ġt e",
|
1453 |
+
"Ġw ould",
|
1454 |
+
"w ard",
|
1455 |
+
"Ġm ore",
|
1456 |
+
"Ġ 6",
|
1457 |
+
"i ed",
|
1458 |
+
"os e",
|
1459 |
+
"ri b",
|
1460 |
+
"ĠU n",
|
1461 |
+
"Ġal l",
|
1462 |
+
"ing s",
|
1463 |
+
"ter n",
|
1464 |
+
"c es",
|
1465 |
+
"ab le",
|
1466 |
+
"Ġw e",
|
1467 |
+
"it ed",
|
1468 |
+
"e ver",
|
1469 |
+
"ent s",
|
1470 |
+
"Ġh im",
|
1471 |
+
"as ed",
|
1472 |
+
"or s",
|
1473 |
+
"o y",
|
1474 |
+
"o od",
|
1475 |
+
"Ġc ent",
|
1476 |
+
"i x",
|
1477 |
+
"as e",
|
1478 |
+
"il d",
|
1479 |
+
"ĠA n",
|
1480 |
+
"Ġ 7",
|
1481 |
+
"Ġw ork",
|
1482 |
+
"at es",
|
1483 |
+
"i ous",
|
1484 |
+
"at h",
|
1485 |
+
"Ġp o",
|
1486 |
+
"ro p",
|
1487 |
+
"ol d",
|
1488 |
+
"al s",
|
1489 |
+
"is s",
|
1490 |
+
"e y",
|
1491 |
+
"ic t",
|
1492 |
+
"Ġf e",
|
1493 |
+
"Ġthe m",
|
1494 |
+
"g an",
|
1495 |
+
"Ġs ec",
|
1496 |
+
"Ġb et",
|
1497 |
+
"Ġwhe n",
|
1498 |
+
"Ġs ong",
|
1499 |
+
"Ġre m",
|
1500 |
+
"e p",
|
1501 |
+
"f orm",
|
1502 |
+
"a il",
|
1503 |
+
"f er",
|
1504 |
+
"Ġe ar",
|
1505 |
+
"ub l",
|
1506 |
+
"a w",
|
1507 |
+
"Ġk n",
|
1508 |
+
"ak e",
|
1509 |
+
"a us",
|
1510 |
+
"Ġm ost",
|
1511 |
+
"Ġcon s",
|
1512 |
+
"Ġd uring",
|
1513 |
+
"ĠA s",
|
1514 |
+
"or th",
|
1515 |
+
"Ġn ew",
|
1516 |
+
"er ed",
|
1517 |
+
"il m",
|
1518 |
+
"v ed",
|
1519 |
+
"at t",
|
1520 |
+
"Ġon ly",
|
1521 |
+
"Ġ 9",
|
1522 |
+
"Ġd ec",
|
1523 |
+
"Ġ 8",
|
1524 |
+
"ic k",
|
1525 |
+
"Ġg ame",
|
1526 |
+
"on s",
|
1527 |
+
"u g",
|
1528 |
+
"Ġt r",
|
1529 |
+
"f t",
|
1530 |
+
"ot h",
|
1531 |
+
"o ok",
|
1532 |
+
"ĠM ar",
|
1533 |
+
"re at",
|
1534 |
+
"w ay",
|
1535 |
+
"Ġc an",
|
1536 |
+
"ol low",
|
1537 |
+
"ou th",
|
1538 |
+
"we en",
|
1539 |
+
"ĠE n",
|
1540 |
+
"Ġ19 9",
|
1541 |
+
"ter s",
|
1542 |
+
"Ġre l",
|
1543 |
+
"in d",
|
1544 |
+
"Ġab out",
|
1545 |
+
"Ġse ason",
|
1546 |
+
"Ġag ain",
|
1547 |
+
"r al",
|
1548 |
+
"Ġth ree",
|
1549 |
+
"ation al",
|
1550 |
+
"Ġu nder",
|
1551 |
+
"ul ar",
|
1552 |
+
"Ġm e",
|
1553 |
+
"Ġth an",
|
1554 |
+
"ĠC om",
|
1555 |
+
"ĠA r",
|
1556 |
+
"h ip",
|
1557 |
+
"o b",
|
1558 |
+
"Ġn e",
|
1559 |
+
"Ġbet ween",
|
1560 |
+
"Ġf l",
|
1561 |
+
"h n",
|
1562 |
+
"v e",
|
1563 |
+
"Ġch ar",
|
1564 |
+
"Ġc ol",
|
1565 |
+
"Ġrec ord",
|
1566 |
+
"i ew",
|
1567 |
+
"r on",
|
1568 |
+
"f ore",
|
1569 |
+
"Ġth rough",
|
1570 |
+
"is ion",
|
1571 |
+
"or n",
|
1572 |
+
"Ġ 00",
|
1573 |
+
"oc k",
|
1574 |
+
"Ġ ver",
|
1575 |
+
"Ġl ater",
|
1576 |
+
"Ġn um",
|
1577 |
+
"Ġe nd",
|
1578 |
+
"ol og",
|
1579 |
+
"am es",
|
1580 |
+
"Ġp os",
|
1581 |
+
"Ġw rit",
|
1582 |
+
"Ġpro du",
|
1583 |
+
"Ġwh ile",
|
1584 |
+
"Ġa ct",
|
1585 |
+
"Ġre le",
|
1586 |
+
"Ġf ilm",
|
1587 |
+
"is hed",
|
1588 |
+
"Ġp r",
|
1589 |
+
"an s",
|
1590 |
+
"Ġre g",
|
1591 |
+
"Ġfor m",
|
1592 |
+
"Ġas s",
|
1593 |
+
"ĠS e",
|
1594 |
+
"ur y",
|
1595 |
+
"t ed",
|
1596 |
+
"t s",
|
1597 |
+
"Ġm ade",
|
1598 |
+
"Ġsu b",
|
1599 |
+
"Ġp e",
|
1600 |
+
"Ġs o",
|
1601 |
+
"or ld",
|
1602 |
+
"Ġre t",
|
1603 |
+
"ĠN ew",
|
1604 |
+
"Ġsp ec",
|
1605 |
+
"Ġa cc",
|
1606 |
+
"Ġ qu",
|
1607 |
+
"Ġwhe re",
|
1608 |
+
"en er",
|
1609 |
+
"Ġm ov",
|
1610 |
+
"he s",
|
1611 |
+
"mer ic",
|
1612 |
+
"at ing",
|
1613 |
+
"Ġin ter",
|
1614 |
+
"ĠL e",
|
1615 |
+
"ĠA meric",
|
1616 |
+
"Ġ ra",
|
1617 |
+
"Ġs ome",
|
1618 |
+
"Ġc o",
|
1619 |
+
"Ġl ar",
|
1620 |
+
"Ġb u",
|
1621 |
+
"Ġde f",
|
1622 |
+
"b um",
|
1623 |
+
"Ġa c",
|
1624 |
+
"Ġm us",
|
1625 |
+
"Ġf ollow",
|
1626 |
+
"ĠA t",
|
1627 |
+
"in s",
|
1628 |
+
"iv ed",
|
1629 |
+
"if ic",
|
1630 |
+
"u al",
|
1631 |
+
"Ġa m",
|
1632 |
+
"Ġsu ch",
|
1633 |
+
"Ġsec ond",
|
1634 |
+
"i ke",
|
1635 |
+
"Ġf our",
|
1636 |
+
"Ġin d",
|
1637 |
+
"an n",
|
1638 |
+
"he n",
|
1639 |
+
"Ġus ed",
|
1640 |
+
"ĠR e",
|
1641 |
+
"ic s",
|
1642 |
+
"le ct",
|
1643 |
+
"Ġd ay",
|
1644 |
+
"i el",
|
1645 |
+
"il y",
|
1646 |
+
"ĠTh is",
|
1647 |
+
"Ġ 0",
|
1648 |
+
"Ġp ubl",
|
1649 |
+
"Ġc all",
|
1650 |
+
"ĠJ o",
|
1651 |
+
"l l",
|
1652 |
+
"Ġal bum",
|
1653 |
+
"Ġ00 0",
|
1654 |
+
"ran s",
|
1655 |
+
"Ġd o",
|
1656 |
+
"an y",
|
1657 |
+
"Ġbe fore",
|
1658 |
+
"ro s",
|
1659 |
+
"ĠS h",
|
1660 |
+
"Ġs y",
|
1661 |
+
"a id",
|
1662 |
+
"ĠEn g",
|
1663 |
+
"Ġbe ing",
|
1664 |
+
"Ġ1 0",
|
1665 |
+
"u c",
|
1666 |
+
"Ġe p",
|
1667 |
+
"Ġsu pp",
|
1668 |
+
"Ġthe re",
|
1669 |
+
"Ġyear s",
|
1670 |
+
"ar s",
|
1671 |
+
"ow ever",
|
1672 |
+
"Ġ ent",
|
1673 |
+
"if e",
|
1674 |
+
"Ġh igh",
|
1675 |
+
"Ġf ound",
|
1676 |
+
"ir d",
|
1677 |
+
"Ġn o",
|
1678 |
+
"Ġs et",
|
1679 |
+
"in es",
|
1680 |
+
"iv er",
|
1681 |
+
"i o",
|
1682 |
+
"ot her",
|
1683 |
+
"j ect",
|
1684 |
+
"Ġs ur",
|
1685 |
+
"a j",
|
1686 |
+
"t en",
|
1687 |
+
"Ġt ra",
|
1688 |
+
"Ġ1 2",
|
1689 |
+
"is ed",
|
1690 |
+
"it ies",
|
1691 |
+
"vel op",
|
1692 |
+
"Ġb l",
|
1693 |
+
"al e",
|
1694 |
+
"Ġser ies",
|
1695 |
+
"Ġl oc",
|
1696 |
+
"Ġnum ber",
|
1697 |
+
"Ġp res",
|
1698 |
+
"an e",
|
1699 |
+
"aus e",
|
1700 |
+
"od e",
|
1701 |
+
"e k",
|
1702 |
+
"t on",
|
1703 |
+
"ĠS c",
|
1704 |
+
"i er",
|
1705 |
+
"is e",
|
1706 |
+
"Ġse ver",
|
1707 |
+
"in ce",
|
1708 |
+
"Ġb oth",
|
1709 |
+
"an k",
|
1710 |
+
"ro w",
|
1711 |
+
"ire ct",
|
1712 |
+
"s on",
|
1713 |
+
"Ġthe n",
|
1714 |
+
"ĠB rit",
|
1715 |
+
"i et",
|
1716 |
+
"Ġ1 6",
|
1717 |
+
"Ġep is",
|
1718 |
+
"Ġinclud ing",
|
1719 |
+
"it s",
|
1720 |
+
"ig in",
|
1721 |
+
"p r",
|
1722 |
+
"Ġ /",
|
1723 |
+
"Ġagain st",
|
1724 |
+
"Ġw ell",
|
1725 |
+
"Ġbec ame",
|
1726 |
+
"Ġex p",
|
1727 |
+
"Ġkn own",
|
1728 |
+
"Ġt rans",
|
1729 |
+
"Ġchar ac",
|
1730 |
+
"ĠâĢ Ķ",
|
1731 |
+
"r am",
|
1732 |
+
"Ġb ack",
|
1733 |
+
"Ġad d",
|
1734 |
+
"Ġp op",
|
1735 |
+
"Ġg o",
|
1736 |
+
"ur ch",
|
1737 |
+
"Ġdes c",
|
1738 |
+
"Ġs ing",
|
1739 |
+
"iel d",
|
1740 |
+
"Ġper form",
|
1741 |
+
"ain ed",
|
1742 |
+
"Ġre ce",
|
1743 |
+
"id ent",
|
1744 |
+
"Ġe m",
|
1745 |
+
"er t",
|
1746 |
+
"u res",
|
1747 |
+
"Ġin v",
|
1748 |
+
"Ġde p",
|
1749 |
+
"Ġ19 8",
|
1750 |
+
"a ir",
|
1751 |
+
"er n",
|
1752 |
+
"at her",
|
1753 |
+
"f ul",
|
1754 |
+
"Ġ Z",
|
1755 |
+
"Ġm on",
|
1756 |
+
"Ġman y",
|
1757 |
+
"Ġm ain",
|
1758 |
+
"Ġst ud",
|
1759 |
+
"Ġl ong",
|
1760 |
+
"in n",
|
1761 |
+
"th ough",
|
1762 |
+
"u p",
|
1763 |
+
"o ol",
|
1764 |
+
"ĠUn ited",
|
1765 |
+
"l ed",
|
1766 |
+
"em ent",
|
1767 |
+
"Ġ1 5",
|
1768 |
+
"ow er",
|
1769 |
+
"ĠJo hn",
|
1770 |
+
"Ġo p",
|
1771 |
+
"Ġ1 1",
|
1772 |
+
"in ed",
|
1773 |
+
"Ġm et",
|
1774 |
+
"o ber",
|
1775 |
+
"le y",
|
1776 |
+
"Ġ1 7",
|
1777 |
+
"Ġcent ury",
|
1778 |
+
"Ġte am",
|
1779 |
+
"Ġ est",
|
1780 |
+
"ĠA fter",
|
1781 |
+
"y l",
|
1782 |
+
"Ġm in",
|
1783 |
+
"u ch",
|
1784 |
+
"ut e",
|
1785 |
+
"Ġde velop",
|
1786 |
+
"ĠS he",
|
1787 |
+
"i am",
|
1788 |
+
"Ġsh ow",
|
1789 |
+
"el f",
|
1790 |
+
"Ġre p",
|
1791 |
+
"Ġcon c",
|
1792 |
+
"at ive",
|
1793 |
+
"Ġc re",
|
1794 |
+
"over n",
|
1795 |
+
"a red",
|
1796 |
+
"Ġ19 4",
|
1797 |
+
"Ġor igin",
|
1798 |
+
"Ġs m",
|
1799 |
+
"iv ers",
|
1800 |
+
"a z",
|
1801 |
+
"Ġle ad",
|
1802 |
+
"Ġsever al",
|
1803 |
+
"a h",
|
1804 |
+
"Ġo b",
|
1805 |
+
"Ġre v",
|
1806 |
+
"Ġm ill",
|
1807 |
+
"er m",
|
1808 |
+
"u ally",
|
1809 |
+
"o ot",
|
1810 |
+
"Ġbe gan",
|
1811 |
+
"Ġ19 6",
|
1812 |
+
"i red",
|
1813 |
+
"Ġd if",
|
1814 |
+
"Ġcont in",
|
1815 |
+
"Ġs ign",
|
1816 |
+
"i k",
|
1817 |
+
"ĠI nd",
|
1818 |
+
"ment s",
|
1819 |
+
"iz ed",
|
1820 |
+
"Ġ19 7",
|
1821 |
+
"Ġd irect",
|
1822 |
+
"a u",
|
1823 |
+
"Ġex t",
|
1824 |
+
"ros s",
|
1825 |
+
"em b",
|
1826 |
+
"d er",
|
1827 |
+
"Ġp ol",
|
1828 |
+
"Ġm ay",
|
1829 |
+
"a pt",
|
1830 |
+
"el s",
|
1831 |
+
"ĠW h",
|
1832 |
+
"Ġcomp le",
|
1833 |
+
"Ġar t",
|
1834 |
+
"ĠB r",
|
1835 |
+
"ĠI s",
|
1836 |
+
"un e",
|
1837 |
+
"t il",
|
1838 |
+
"Ġc rit",
|
1839 |
+
"Ġh ist",
|
1840 |
+
"Ġear ly",
|
1841 |
+
"Ġc ould",
|
1842 |
+
"ĠC on",
|
1843 |
+
"Ġd id",
|
1844 |
+
"Ġb el",
|
1845 |
+
"Ġcall ed",
|
1846 |
+
"u ed",
|
1847 |
+
"Ġn ear",
|
1848 |
+
"Ġepis ode",
|
1849 |
+
"y p",
|
1850 |
+
"Ġdesc rib"
|
1851 |
+
]
|
1852 |
+
}
|
1853 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"eos_token": "<|endoftext|>",
|
5 |
+
"model_max_length": 1024,
|
6 |
+
"name_or_path": "hf-internal-testing/tiny-random-gpt2",
|
7 |
+
"special_tokens_map_file": null,
|
8 |
+
"tokenizer_class": "GPT2Tokenizer",
|
9 |
+
"unk_token": "<|endoftext|>"
|
10 |
+
}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<|endoftext|>":0,"!":1,"\"":2,"#":3,"$":4,"%":5,"&":6,"'":7,"(":8,")":9,"*":10,"+":11,",":12,"-":13,".":14,"/":15,"0":16,"1":17,"2":18,"3":19,"4":20,"5":21,"6":22,"7":23,"8":24,"9":25,":":26,";":27,"<":28,"=":29,">":30,"?":31,"@":32,"A":33,"B":34,"C":35,"D":36,"E":37,"F":38,"G":39,"H":40,"I":41,"J":42,"K":43,"L":44,"M":45,"N":46,"O":47,"P":48,"Q":49,"R":50,"S":51,"T":52,"U":53,"V":54,"W":55,"X":56,"Y":57,"Z":58,"[":59,"\\":60,"]":61,"^":62,"_":63,"`":64,"a":65,"b":66,"c":67,"d":68,"e":69,"f":70,"g":71,"h":72,"i":73,"j":74,"k":75,"l":76,"m":77,"n":78,"o":79,"p":80,"q":81,"r":82,"s":83,"t":84,"u":85,"v":86,"w":87,"x":88,"y":89,"z":90,"|":91,"}":92,"~":93,"¡":94,"¢":95,"£":96,"¤":97,"¥":98,"¦":99,"§":100,"¨":101,"©":102,"ª":103,"«":104,"¬":105,"®":106,"¯":107,"°":108,"±":109,"²":110,"³":111,"´":112,"µ":113,"¶":114,"·":115,"¸":116,"¹":117,"º":118,"»":119,"¼":120,"½":121,"¾":122,"¿":123,"Â":124,"Ã":125,"Ä":126,"Å":127,"Æ":128,"Ç":129,"È":130,"É":131,"Ê":132,"Ë":133,"Ì":134,"Í":135,"Î":136,"Ï":137,"Ð":138,"Ñ":139,"Ö":140,"×":141,"Ø":142,"Ù":143,"Ü":144,"à":145,"á":146,"â":147,"ã":148,"ä":149,"å":150,"æ":151,"ç":152,"è":153,"é":154,"ë":155,"ì":156,"ï":157,"Ċ":158,"Ġ":159,"Ģ":160,"ģ":161,"Ĥ":162,"ĥ":163,"Ħ":164,"ħ":165,"Ĩ":166,"ĩ":167,"Ī":168,"ī":169,"Ĭ":170,"ĭ":171,"Į":172,"į":173,"İ":174,"ı":175,"IJ":176,"ij":177,"Ĵ":178,"ĵ":179,"Ķ":180,"ķ":181,"ĸ":182,"Ĺ":183,"ĺ":184,"Ļ":185,"ļ":186,"Ľ":187,"ľ":188,"Ŀ":189,"ŀ":190,"Ł":191,"ł":192,"Ń":193,"Ġt":194,"he":195,"Ġa":196,"in":197,"Ġthe":198,"er":199,"on":200,"Ġ,":201,"re":202,"Ġs":203,"ed":204,"Ġo":205,"Ġw":206,"nd":207,"at":208,"Ġ.":209,"or":210,"it":211,"Ġc":212,"en":213,"Ġf":214,"is":215,"es":216,"ar":217,"Ġof":218,"Ġb":219,"an":220,"Ġin":221,"al":222,"ing":223,"Ġp":224,"Ġand":225,"as":226,"Ġto":227,"ro":228,"ic":229,"Ġm":230,"Ġd":231,"Ġh":232,"ion":233,"le":234,"ou":235,"ĠT":236,"Ġre":237,"Ġ=":238,"Ġ\"":239,"ĠA":240,"ĠS":241,"ent":242,"il":243,"Ġth":244,"Ġ1":245,"st":246,"ĠC":247,"el":248,"om":249,"Ġl":250,"am":251,"ĠĊ":252,"Ġe":253,"Ġn":254,"Ġ@":255,"ad":256,"ac":257,"Ġwas":258,"ĠM":259,"ur":260,"ĠThe":261,"ec":262,"Ġon":263,"ly":264,"ĠB":265,"ĠI":266,"Ġg":267,"Ġ'":268,"et":269,"ol":270,"id":271,"iv":272,"im":273,"Ġfor":274,"ir":275,"-@":276,"Ġ@-@":277,"ig":278,"ot":279,"ter":280,"Ġas":281,"ĠH":282,"us":283,"ow":284,"Ġst":285,"ut":286,"ith":287,"ay":288,"Ġ2":289,"ĠP":290,"ation":291,"ver":292,"Ġbe":293,"her":294,"Ġthat":295,"Ġwith":296,"ĠR":297,"ce":298,"th":299,"ĠD":300,"Ġis":301,"un":302,"em":303,"ĠF":304,"Ġwh":305,"ul":306,"Ġby":307,"Ġal":308,"ch":309,"Ġ)":310,"Ġ(":311,"ĠW":312,"Ġcon":313,"ra":314,"ĠG":315,"os":316,"ĠL":317,"ĠN":318,"Ġat":319,"ers":320,"ct":321,"Ġit":322,"Ġ19":323,"rom":324,"and":325,"Ġan":326,"um":327,"est":328,"ĠJ":329,"ag":330,"Ġhe":331,"00":332,"ist":333,"ain":334,"od":335,"av":336,"ri":337,"ĠE":338,"ĠO":339,"Ġfrom":340,"Ġcom":341,"Ġhis":342,"op":343,"Ġpro":344,"res":345,"ies":346,"if":347,"Ġv":348,"ort":349,"ere":350,"ill":351,"ld":352,"Ġde":353,"pp":354,"Ġsu":355,"ore":356,"ĠIn":357,"Ġr":358,"Ġse":359,"Ġwere":360,"ew":361,"ong":362,"igh":363,"ard":364,"ate":365,"all":366,"art":367,"ak":368,"ich":369,"Ġch":370,"Ġor":371,"ab":372,"ant":373,"ud":374,"oc":375,"ber":376,"Ġex":377,"gh":378,"ity":379,"ated":380,"pt":381,"ess":382,"ear":383,"ĠK":384,"Ġpl":385,"ame":386,"qu":387,"ive":388,"rou":389,"Ġare":390,"Ġâ":391,"Ġsh":392,"Ġk":393,"ack":394,"ect":395,"ĠâĢ":396,"ĠU":397,"Ġhad":398,"se":399,"Ġwhich":400,"red":401,"ov":402,"ĠSt":403,"ast":404,"Ġsp":405,"ian":406,"Ġy":407,"ment":408,"Ġle":409,"Ġnot":410,"ge":411,"ord":412,"rit":413,"ip":414,"ine":415,"ell":416,"ally":417,"our":418,"ost":419,"ight":420,"ther":421,"ap":422,"Ġu":423,"ish":424,"ĠCh":425,"oun":426,"ia":427,"Ġ3":428,"ave":429,"ary":430,"ust":431,"og":432,"Ġ200":433,"Ġun":434,"ous":435,"irst":436,"ĠV":437,"cc":438,"Ġinc":439,"Ġ;":440,"Ġcomp":441,"ru":442,"ions":443,"Ġtheir":444,"Ġbut":445,"ide":446,"ure":447,"so":448,"Ġcont":449,"Ġint":450,"fter":451,"ical":452,"ial":453,"Ġar":454,"Ġfirst":455,"ould":456,"Ġits":457,"hed":458,"ĠâĢĵ":459,"Ġwhe":460,"wo":461,"out":462,"ub":463,"Ġ20":464,"ff":465,"Ġ:":466,"ue":467,"Ġher":468,"own":469,"ok":470,"Ġalso":471,"Ġcl":472,"per":473,"ign":474,"ater":475,"ran":476,"orm":477,"ie":478,"ome":479,"ork":480,"ass":481,"ire":482,"end":483,"Ġres":484,"Ġab":485,"Ġad":486,"Ġus":487,"ry":488,"Ġrec":489,"Ġhave":490,"age":491,"ĠHe":492,"Ġ4":493,"Ġro":494,"mer":495,"Ġone":496,"ond":497,"low":498,"Ġhas":499,"ĠTh":500,"du":501,"Ġ5":502,"Ġper":503,"Ġbeen":504,"ime":505,"Ġtwo":506,"ence":507,"land":508,"Ġ18":509,".@":510,"Ġ@.@":511,"ult":512,"ree":513,"ough":514,"ile":515,"Ġwho":516,"ĠAl":517,"Ġsc":518,"uring":519,"pl":520,"ory":521,"ition":522,"ric":523,"ations":524,"Ġdis":525,"Ġthis":526,"Ġbec":527,"Ġapp":528,"iz":529,"ĠIt":530,"are":531,"ach":532,"lud":533,"ade":534,"Ġplay":535,"Ġj":536,"Ġman":537,"act":538,"ely":539,"Ġpart":540,"Ġdes":541,"Ġag":542,"Ġthey":543,"Ġyear":544,"ount":545,"Ġ201":546,"Ġover":547,"Ġother":548,"ound":549,"Ġafter":550,"ib":551,"over":552,"Ġser":553,"Ġen":554,"Ġoff":555,"Ġim":556,"ction":557,"ĠY":558,"ke":559,"ite":560,",@":561,"Ġ@,@":562,"te":563,"urn":564,"Ġinclud":565,"ress":566,"ance":567,"ang":568,"Ġatt":569,"ice":570,"ace":571,"ark":572,"Ġout":573,"wn":574,"ph":575,"ember":576,"Ġpre":577,"Ġup":578,"ens":579,"man":580,"Ġev":581,"Ġtime":582,"nder":583,"rough":584,"ced":585,"Ġfin":586,"Ġinto":587,"one":588,"port":589,"round":590,"we":591,"ren":592,"les":593,"int":594,"ĠOn":595,"vel":596,"Ġcomm":597,"Ġshe":598,"ason":599,"amp":600,"Ġte":601,"Ġwould":602,"ward":603,"Ġmore":604,"Ġ6":605,"ied":606,"ose":607,"rib":608,"ĠUn":609,"Ġall":610,"ings":611,"tern":612,"ces":613,"able":614,"Ġwe":615,"ited":616,"ever":617,"ents":618,"Ġhim":619,"ased":620,"ors":621,"oy":622,"ood":623,"Ġcent":624,"ix":625,"ase":626,"ild":627,"ĠAn":628,"Ġ7":629,"Ġwork":630,"ates":631,"ious":632,"ath":633,"Ġpo":634,"rop":635,"old":636,"als":637,"iss":638,"ey":639,"ict":640,"Ġfe":641,"Ġthem":642,"gan":643,"Ġsec":644,"Ġbet":645,"Ġwhen":646,"Ġsong":647,"Ġrem":648,"ep":649,"form":650,"ail":651,"fer":652,"Ġear":653,"ubl":654,"aw":655,"Ġkn":656,"ake":657,"aus":658,"Ġmost":659,"Ġcons":660,"Ġduring":661,"ĠAs":662,"orth":663,"Ġnew":664,"ered":665,"ilm":666,"ved":667,"att":668,"Ġonly":669,"Ġ9":670,"Ġdec":671,"Ġ8":672,"ick":673,"Ġgame":674,"ons":675,"ug":676,"Ġtr":677,"ft":678,"oth":679,"ook":680,"ĠMar":681,"reat":682,"way":683,"Ġcan":684,"ollow":685,"outh":686,"ween":687,"ĠEn":688,"Ġ199":689,"ters":690,"Ġrel":691,"ind":692,"Ġabout":693,"Ġseason":694,"Ġagain":695,"ral":696,"Ġthree":697,"ational":698,"Ġunder":699,"ular":700,"Ġme":701,"Ġthan":702,"ĠCom":703,"ĠAr":704,"hip":705,"ob":706,"Ġne":707,"Ġbetween":708,"Ġfl":709,"hn":710,"ve":711,"Ġchar":712,"Ġcol":713,"Ġrecord":714,"iew":715,"ron":716,"fore":717,"Ġthrough":718,"ision":719,"orn":720,"Ġ00":721,"ock":722,"Ġver":723,"Ġlater":724,"Ġnum":725,"Ġend":726,"olog":727,"ames":728,"Ġpos":729,"Ġwrit":730,"Ġprodu":731,"Ġwhile":732,"Ġact":733,"Ġrele":734,"Ġfilm":735,"ished":736,"Ġpr":737,"ans":738,"Ġreg":739,"Ġform":740,"Ġass":741,"ĠSe":742,"ury":743,"ted":744,"ts":745,"Ġmade":746,"Ġsub":747,"Ġpe":748,"Ġso":749,"orld":750,"Ġret":751,"ĠNew":752,"Ġspec":753,"Ġacc":754,"Ġqu":755,"Ġwhere":756,"ener":757,"Ġmov":758,"hes":759,"meric":760,"ating":761,"Ġinter":762,"ĠLe":763,"ĠAmeric":764,"Ġra":765,"Ġsome":766,"Ġco":767,"Ġlar":768,"Ġbu":769,"Ġdef":770,"bum":771,"Ġac":772,"Ġmus":773,"Ġfollow":774,"ĠAt":775,"ins":776,"ived":777,"ific":778,"ual":779,"Ġam":780,"Ġsuch":781,"Ġsecond":782,"ike":783,"Ġfour":784,"Ġind":785,"ann":786,"hen":787,"Ġused":788,"ĠRe":789,"ics":790,"lect":791,"Ġday":792,"iel":793,"ily":794,"ĠThis":795,"Ġ0":796,"Ġpubl":797,"Ġcall":798,"ĠJo":799,"ll":800,"Ġalbum":801,"Ġ000":802,"rans":803,"Ġdo":804,"any":805,"Ġbefore":806,"ros":807,"ĠSh":808,"Ġsy":809,"aid":810,"ĠEng":811,"Ġbeing":812,"Ġ10":813,"uc":814,"Ġep":815,"Ġsupp":816,"Ġthere":817,"Ġyears":818,"ars":819,"owever":820,"Ġent":821,"ife":822,"Ġhigh":823,"Ġfound":824,"ird":825,"Ġno":826,"Ġset":827,"ines":828,"iver":829,"io":830,"other":831,"ject":832,"Ġsur":833,"aj":834,"ten":835,"Ġtra":836,"Ġ12":837,"ised":838,"ities":839,"velop":840,"Ġbl":841,"ale":842,"Ġseries":843,"Ġloc":844,"Ġnumber":845,"Ġpres":846,"ane":847,"ause":848,"ode":849,"ek":850,"ton":851,"ĠSc":852,"ier":853,"ise":854,"Ġsever":855,"ince":856,"Ġboth":857,"ank":858,"row":859,"irect":860,"son":861,"Ġthen":862,"ĠBrit":863,"iet":864,"Ġ16":865,"Ġepis":866,"Ġincluding":867,"its":868,"igin":869,"pr":870,"Ġ/":871,"Ġagainst":872,"Ġwell":873,"Ġbecame":874,"Ġexp":875,"Ġknown":876,"Ġtrans":877,"Ġcharac":878,"ĠâĢĶ":879,"ram":880,"Ġback":881,"Ġadd":882,"Ġpop":883,"Ġgo":884,"urch":885,"Ġdesc":886,"Ġsing":887,"ield":888,"Ġperform":889,"ained":890,"Ġrece":891,"ident":892,"Ġem":893,"ert":894,"ures":895,"Ġinv":896,"Ġdep":897,"Ġ198":898,"air":899,"ern":900,"ather":901,"ful":902,"ĠZ":903,"Ġmon":904,"Ġmany":905,"Ġmain":906,"Ġstud":907,"Ġlong":908,"inn":909,"though":910,"up":911,"ool":912,"ĠUnited":913,"led":914,"ement":915,"Ġ15":916,"ower":917,"ĠJohn":918,"Ġop":919,"Ġ11":920,"ined":921,"Ġmet":922,"ober":923,"ley":924,"Ġ17":925,"Ġcentury":926,"Ġteam":927,"Ġest":928,"ĠAfter":929,"yl":930,"Ġmin":931,"uch":932,"ute":933,"Ġdevelop":934,"ĠShe":935,"iam":936,"Ġshow":937,"elf":938,"Ġrep":939,"Ġconc":940,"ative":941,"Ġcre":942,"overn":943,"ared":944,"Ġ194":945,"Ġorigin":946,"Ġsm":947,"ivers":948,"az":949,"Ġlead":950,"Ġseveral":951,"ah":952,"Ġob":953,"Ġrev":954,"Ġmill":955,"erm":956,"ually":957,"oot":958,"Ġbegan":959,"Ġ196":960,"ired":961,"Ġdif":962,"Ġcontin":963,"Ġsign":964,"ik":965,"ĠInd":966,"ments":967,"ized":968,"Ġ197":969,"Ġdirect":970,"au":971,"Ġext":972,"ross":973,"emb":974,"der":975,"Ġpol":976,"Ġmay":977,"apt":978,"els":979,"ĠWh":980,"Ġcomple":981,"Ġart":982,"ĠBr":983,"ĠIs":984,"une":985,"til":986,"Ġcrit":987,"Ġhist":988,"Ġearly":989,"Ġcould":990,"ĠCon":991,"Ġdid":992,"Ġbel":993,"Ġcalled":994,"ued":995,"Ġnear":996,"Ġepisode":997,"yp":998,"Ġdescrib":999}
|