Zhichao Geng commited on
Commit
a173859
·
verified ·
1 Parent(s): 221df45

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -0
README.md CHANGED
@@ -1,3 +1,117 @@
1
  ---
 
2
  license: apache-2.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
  license: apache-2.0
4
+ tags:
5
+ - learned sparse
6
+ - opensearch
7
+ - transformers
8
+ - retrieval
9
  ---
10
+
11
+ # opensearch-neural-sparse-encoding-v1
12
+ This is a learned sparse retrieval model. It encodes the documents to 30522 dimensional **sparse vectors**. For queries, it just use a tokenizer and a weight look-up table to generate sparse vectors. The non-zero dimension index means the corresponding token in the vocabulary, and the weight means the importance of the token. And the similarity score is the inner product of query/document sparse vectors. In the real-world use case, the search performance of opensearch-neural-sparse-encoding-v1 is comparable to BM25.
13
+
14
+
15
+ OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API.
16
+
17
+ ## Usage (HuggingFace)
18
+ This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API.
19
+
20
+ ```
21
+ import json
22
+ import itertools
23
+ import torch
24
+
25
+ from transformers import AutoModelForMaskedLM, AutoTokenizer
26
+ from transformers.utils import cached_path,hf_bucket_url
27
+
28
+
29
+ # get sparse vector from dense vectors with shape batch_size * seq_len * vocab_size
30
+ def get_sparse_vector(feature, output):
31
+ values, _ = torch.max(output*feature["attention_mask"].unsqueeze(-1), dim=1)
32
+ values = torch.log(1 + torch.relu(values))
33
+ values[:,special_token_ids] = 0
34
+ return values
35
+
36
+ # transform the sparse vector to a dict of (token, weight)
37
+ def transform_sparse_vector_to_dict(sparse_vector):
38
+ sample_indices,token_indices=torch.nonzero(sparse_vector,as_tuple=True)
39
+ non_zero_values = sparse_vector[(sample_indices,token_indices)].tolist()
40
+ number_of_tokens_for_each_sample = torch.bincount(sample_indices).cpu().tolist()
41
+ tokens = [transform_sparse_vector_to_dict.id_to_token[_id] for _id in token_indices.tolist()]
42
+
43
+ output = []
44
+ end_idxs = list(itertools.accumulate([0]+number_of_tokens_for_each_sample))
45
+ for i in range(len(end_idxs)-1):
46
+ token_strings = tokens[end_idxs[i]:end_idxs[i+1]]
47
+ weights = non_zero_values[end_idxs[i]:end_idxs[i+1]]
48
+ output.append(dict(zip(token_strings, weights)))
49
+ return output
50
+
51
+ # download the idf file from model hub. idf is used to give weights for query tokens
52
+ def get_tokenizer_idf(tokenizer):
53
+ url = hf_bucket_url("opensearch-project/opensearch-neural-sparse-encoding-doc-v1","idf.json")
54
+ local_cached_path = cached_path(url)
55
+ with open(local_cached_path) as f:
56
+ idf = json.load(f)
57
+ idf_vector = [0]*tokenizer.vocab_size
58
+ for token,weight in idf.items():
59
+ _id = tokenizer._convert_token_to_id_with_added_voc(token)
60
+ idf_vector[_id]=weight
61
+ return torch.tensor(idf_vector)
62
+
63
+ # load the model
64
+ model = AutoModelForMaskedLM.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v1")
65
+ tokenizer = AutoTokenizer.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v1")
66
+ idf = get_tokenizer_idf(tokenizer)
67
+
68
+ # set the special tokens and id_to_token transform for post-process
69
+ special_token_ids = [tokenizer.vocab[token] for token in tokenizer.special_tokens_map.values()]
70
+ get_sparse_vector.special_token_ids = special_token_ids
71
+ id_to_token = ["" for i in range(tokenizer.vocab_size)]
72
+ for token, _id in tokenizer.vocab.items():
73
+ id_to_token[_id] = token
74
+ transform_sparse_vector_to_dict.id_to_token = id_to_token
75
+
76
+
77
+
78
+ query = "What's the weather in ny now?"
79
+ document = "Currently New York is rainy."
80
+
81
+ # encode the query
82
+ feature_query = tokenizer([query], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False)
83
+ input_ids = feature_query["input_ids"]
84
+ batch_size = input_ids.shape[0]
85
+ query_vector = torch.zeros(batch_size, tokenizer.vocab_size)
86
+ query_vector[torch.arange(batch_size).unsqueeze(-1), input_ids] = 1
87
+ query_sparse_vector = query_vector*idf
88
+
89
+ # encode the document
90
+ feature_document = tokenizer([document], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False)
91
+ output = model(**feature_document)[0]
92
+ document_sparse_vector = get_sparse_vector(feature_document, output)
93
+
94
+
95
+ # get similarity score
96
+ sim_score = torch.matmul(query_sparse_vector[0],document_sparse_vector[0])
97
+ print(sim_score) # tensor(12.8465, grad_fn=<DotBackward0>)
98
+
99
+
100
+ query_token_weight = transform_sparse_vector_to_dict(query_sparse_vector)[0]
101
+ document_query_token_weight = transform_sparse_vector_to_dict(document_sparse_vector)[0]
102
+ for token in sorted(query_token_weight, key=lambda x:query_token_weight[x], reverse=True):
103
+ if token in document_query_token_weight:
104
+ print("score in query: %.4f, score in document: %.4f, token: %s"%(query_token_weight[token],document_query_token_weight[token],token))
105
+
106
+
107
+
108
+ # result:
109
+ # score in query: 5.7729, score in document: 1.0552, token: ny
110
+ # score in query: 4.5684, score in document: 1.1697, token: weather
111
+ # score in query: 3.5895, score in document: 0.3932, token: now
112
+ ```
113
+
114
+ The above code sample shows an example of neural sparse search. Although there is no overlap token in original query and document, but this model performs a good match.
115
+
116
+ ## Performance
117
+ This model is trained on MS MARCO dataset. The search relevance score of it can be found here (Neural sparse search bi-encoder) https://opensearch.org/blog/improving-document-retrieval-with-sparse-semantic-encoders/.