Zhichao Geng
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,117 @@
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- learned sparse
|
6 |
+
- opensearch
|
7 |
+
- transformers
|
8 |
+
- retrieval
|
9 |
---
|
10 |
+
|
11 |
+
# opensearch-neural-sparse-encoding-v1
|
12 |
+
This is a learned sparse retrieval model. It encodes the documents to 30522 dimensional **sparse vectors**. For queries, it just use a tokenizer and a weight look-up table to generate sparse vectors. The non-zero dimension index means the corresponding token in the vocabulary, and the weight means the importance of the token. And the similarity score is the inner product of query/document sparse vectors. In the real-world use case, the search performance of opensearch-neural-sparse-encoding-v1 is comparable to BM25.
|
13 |
+
|
14 |
+
|
15 |
+
OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API.
|
16 |
+
|
17 |
+
## Usage (HuggingFace)
|
18 |
+
This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API.
|
19 |
+
|
20 |
+
```
|
21 |
+
import json
|
22 |
+
import itertools
|
23 |
+
import torch
|
24 |
+
|
25 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
26 |
+
from transformers.utils import cached_path,hf_bucket_url
|
27 |
+
|
28 |
+
|
29 |
+
# get sparse vector from dense vectors with shape batch_size * seq_len * vocab_size
|
30 |
+
def get_sparse_vector(feature, output):
|
31 |
+
values, _ = torch.max(output*feature["attention_mask"].unsqueeze(-1), dim=1)
|
32 |
+
values = torch.log(1 + torch.relu(values))
|
33 |
+
values[:,special_token_ids] = 0
|
34 |
+
return values
|
35 |
+
|
36 |
+
# transform the sparse vector to a dict of (token, weight)
|
37 |
+
def transform_sparse_vector_to_dict(sparse_vector):
|
38 |
+
sample_indices,token_indices=torch.nonzero(sparse_vector,as_tuple=True)
|
39 |
+
non_zero_values = sparse_vector[(sample_indices,token_indices)].tolist()
|
40 |
+
number_of_tokens_for_each_sample = torch.bincount(sample_indices).cpu().tolist()
|
41 |
+
tokens = [transform_sparse_vector_to_dict.id_to_token[_id] for _id in token_indices.tolist()]
|
42 |
+
|
43 |
+
output = []
|
44 |
+
end_idxs = list(itertools.accumulate([0]+number_of_tokens_for_each_sample))
|
45 |
+
for i in range(len(end_idxs)-1):
|
46 |
+
token_strings = tokens[end_idxs[i]:end_idxs[i+1]]
|
47 |
+
weights = non_zero_values[end_idxs[i]:end_idxs[i+1]]
|
48 |
+
output.append(dict(zip(token_strings, weights)))
|
49 |
+
return output
|
50 |
+
|
51 |
+
# download the idf file from model hub. idf is used to give weights for query tokens
|
52 |
+
def get_tokenizer_idf(tokenizer):
|
53 |
+
url = hf_bucket_url("opensearch-project/opensearch-neural-sparse-encoding-doc-v1","idf.json")
|
54 |
+
local_cached_path = cached_path(url)
|
55 |
+
with open(local_cached_path) as f:
|
56 |
+
idf = json.load(f)
|
57 |
+
idf_vector = [0]*tokenizer.vocab_size
|
58 |
+
for token,weight in idf.items():
|
59 |
+
_id = tokenizer._convert_token_to_id_with_added_voc(token)
|
60 |
+
idf_vector[_id]=weight
|
61 |
+
return torch.tensor(idf_vector)
|
62 |
+
|
63 |
+
# load the model
|
64 |
+
model = AutoModelForMaskedLM.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v1")
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v1")
|
66 |
+
idf = get_tokenizer_idf(tokenizer)
|
67 |
+
|
68 |
+
# set the special tokens and id_to_token transform for post-process
|
69 |
+
special_token_ids = [tokenizer.vocab[token] for token in tokenizer.special_tokens_map.values()]
|
70 |
+
get_sparse_vector.special_token_ids = special_token_ids
|
71 |
+
id_to_token = ["" for i in range(tokenizer.vocab_size)]
|
72 |
+
for token, _id in tokenizer.vocab.items():
|
73 |
+
id_to_token[_id] = token
|
74 |
+
transform_sparse_vector_to_dict.id_to_token = id_to_token
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
query = "What's the weather in ny now?"
|
79 |
+
document = "Currently New York is rainy."
|
80 |
+
|
81 |
+
# encode the query
|
82 |
+
feature_query = tokenizer([query], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False)
|
83 |
+
input_ids = feature_query["input_ids"]
|
84 |
+
batch_size = input_ids.shape[0]
|
85 |
+
query_vector = torch.zeros(batch_size, tokenizer.vocab_size)
|
86 |
+
query_vector[torch.arange(batch_size).unsqueeze(-1), input_ids] = 1
|
87 |
+
query_sparse_vector = query_vector*idf
|
88 |
+
|
89 |
+
# encode the document
|
90 |
+
feature_document = tokenizer([document], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False)
|
91 |
+
output = model(**feature_document)[0]
|
92 |
+
document_sparse_vector = get_sparse_vector(feature_document, output)
|
93 |
+
|
94 |
+
|
95 |
+
# get similarity score
|
96 |
+
sim_score = torch.matmul(query_sparse_vector[0],document_sparse_vector[0])
|
97 |
+
print(sim_score) # tensor(12.8465, grad_fn=<DotBackward0>)
|
98 |
+
|
99 |
+
|
100 |
+
query_token_weight = transform_sparse_vector_to_dict(query_sparse_vector)[0]
|
101 |
+
document_query_token_weight = transform_sparse_vector_to_dict(document_sparse_vector)[0]
|
102 |
+
for token in sorted(query_token_weight, key=lambda x:query_token_weight[x], reverse=True):
|
103 |
+
if token in document_query_token_weight:
|
104 |
+
print("score in query: %.4f, score in document: %.4f, token: %s"%(query_token_weight[token],document_query_token_weight[token],token))
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
# result:
|
109 |
+
# score in query: 5.7729, score in document: 1.0552, token: ny
|
110 |
+
# score in query: 4.5684, score in document: 1.1697, token: weather
|
111 |
+
# score in query: 3.5895, score in document: 0.3932, token: now
|
112 |
+
```
|
113 |
+
|
114 |
+
The above code sample shows an example of neural sparse search. Although there is no overlap token in original query and document, but this model performs a good match.
|
115 |
+
|
116 |
+
## Performance
|
117 |
+
This model is trained on MS MARCO dataset. The search relevance score of it can be found here (Neural sparse search bi-encoder) https://opensearch.org/blog/improving-document-retrieval-with-sparse-semantic-encoders/.
|