Update README.md
Browse files
README.md
CHANGED
@@ -67,6 +67,12 @@ To simplify the comparison, we chosed the Pass@1 metric for the Python language,
|
|
67 |
| CodeLlama-34b-hf | 48.2%|
|
68 |
| opencsg-CodeLlama-34b-v0.1| **56.1%** |
|
69 |
| opencsg-CodeLlama-34b-v0.2| **64.0%** |
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
**TODO**
|
72 |
- We will provide more benchmark scores on fine-tuned models in the future.
|
@@ -180,6 +186,8 @@ HumanEval 是评估模型在代码生成方面性能的最常见的基准,尤
|
|
180 |
| CodeLlama-34b-hf | 48.2%|
|
181 |
| opencsg-CodeLlama-34b-v0.1| **56.1%** |
|
182 |
| opencsg-CodeLlama-34b-v0.2| **64.0%** |
|
|
|
|
|
183 |
|
184 |
**TODO**
|
185 |
- 未来我们将提供更多微调模型的在各基准上的分数。
|
|
|
67 |
| CodeLlama-34b-hf | 48.2%|
|
68 |
| opencsg-CodeLlama-34b-v0.1| **56.1%** |
|
69 |
| opencsg-CodeLlama-34b-v0.2| **64.0%** |
|
70 |
+
| CodeLlama-70b-hf| 53.0% |
|
71 |
+
| CodeLlama-70b-Instruct-hf| **67.8%** |
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
|
77 |
**TODO**
|
78 |
- We will provide more benchmark scores on fine-tuned models in the future.
|
|
|
186 |
| CodeLlama-34b-hf | 48.2%|
|
187 |
| opencsg-CodeLlama-34b-v0.1| **56.1%** |
|
188 |
| opencsg-CodeLlama-34b-v0.2| **64.0%** |
|
189 |
+
| CodeLlama-70b-hf| 53.0% |
|
190 |
+
| CodeLlama-70b-Instruct-hf| **67.8%** |
|
191 |
|
192 |
**TODO**
|
193 |
- 未来我们将提供更多微调模型的在各基准上的分数。
|