Update README.md (#2)
Browse files- Update README.md (642d37ee0d2087a6478457d9aac41fc18de4d67d)
Co-authored-by: mark johnson <[email protected]>
README.md
CHANGED
|
@@ -1,3 +1,100 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- open-r1/OpenThoughts-114k-Code_decontaminated
|
| 5 |
+
base_model:
|
| 6 |
+
- Qwen/Qwen2.5-Coder-3B-Instruct
|
| 7 |
+
library_name: transformers
|
| 8 |
+
tags:
|
| 9 |
+
- code
|
| 10 |
+
- grpo
|
| 11 |
+
- open-r1
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# Model Card for OpenCSG-R1-Qwen2.5-Code-3B-V1
|
| 15 |
+
|
| 16 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-3B-Instruct] (https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) on the [open-r1/OpenThoughts-114k-Code_decontaminated] datasets.
|
| 17 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
| 18 |
+
|
| 19 |
+
## Quick start
|
| 20 |
+
```python
|
| 21 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 22 |
+
import torch
|
| 23 |
+
import pandas as pd
|
| 24 |
+
|
| 25 |
+
model_name = "/data/project/pj/r1/opencsg-r1/open-r1/train/Qwen2.5-3B-Open-R1-Code-GRPO/checkpoint-150"
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
+
model_name,
|
| 28 |
+
torch_dtype="auto",
|
| 29 |
+
device_map="auto"
|
| 30 |
+
)
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=False)
|
| 32 |
+
df = pd.read_parquet('/data/project/pj/r1/opencsg-r1/OpenThoughts-114k-Code_decontaminated/train-00000-of-00006.parquet')
|
| 33 |
+
data = df['problem'][0]
|
| 34 |
+
messages = [
|
| 35 |
+
{
|
| 36 |
+
"role": "user",
|
| 37 |
+
"content": f"Please help me solve the problem: {data}.Output the thinking process within the <think> </think> tags,and then return the final result within the <answer> </answer> tags.",
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"role": "assistant",
|
| 41 |
+
"content": "Let's solve the problem step by step.\n<think>",
|
| 42 |
+
},
|
| 43 |
+
]
|
| 44 |
+
text = tokenizer.apply_chat_template(
|
| 45 |
+
messages,
|
| 46 |
+
tokenize=False,
|
| 47 |
+
continue_final_message=True,
|
| 48 |
+
# add_generation_prompt=True
|
| 49 |
+
)
|
| 50 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 51 |
+
|
| 52 |
+
generated_ids = model.generate(
|
| 53 |
+
**model_inputs,
|
| 54 |
+
max_new_tokens=1024,
|
| 55 |
+
temperature=0.6
|
| 56 |
+
)
|
| 57 |
+
generated_ids = [
|
| 58 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 62 |
+
print(response)
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
| 66 |
+
|
| 67 |
+
### Framework versions
|
| 68 |
+
|
| 69 |
+
- TRL: 0.15.2
|
| 70 |
+
- Transformers: 4.49.0
|
| 71 |
+
- Pytorch: 2.5.1
|
| 72 |
+
- Datasets: 3.3.2
|
| 73 |
+
- Tokenizers: 0.21.0
|
| 74 |
+
|
| 75 |
+
## Citations
|
| 76 |
+
|
| 77 |
+
Cite GRPO as:
|
| 78 |
+
|
| 79 |
+
```bibtex
|
| 80 |
+
@article{zhihong2024deepseekmath,
|
| 81 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
| 82 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
| 83 |
+
year = 2024,
|
| 84 |
+
eprint = {arXiv:2402.03300},
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
Cite TRL as:
|
| 90 |
+
|
| 91 |
+
```bibtex
|
| 92 |
+
@misc{vonwerra2022trl,
|
| 93 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
| 94 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
| 95 |
+
year = 2020,
|
| 96 |
+
journal = {GitHub repository},
|
| 97 |
+
publisher = {GitHub},
|
| 98 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 99 |
+
}
|
| 100 |
+
```
|