james-ocf commited on
Commit
69f5946
·
verified ·
1 Parent(s): aa60b85

Upload model - gtjmp2r6

Browse files
README.md CHANGED
@@ -3,61 +3,72 @@ language: en
3
  library_name: pytorch
4
  license: mit
5
  ---
 
 
 
6
 
7
-
8
-
9
-
10
-
11
-
12
  # PVNet_summation
13
 
 
14
  ## Model Description
15
 
16
- <!-- Provide a longer summary of what this model is/does. -->
17
- This model class sums the output of the PVNet model's GSP level predictions to make a national forecast of UK PV output. More information can be found in the model repo [1], the PVNet model repo [2], and experimental notes in [this google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing).
 
 
18
 
19
  - **Developed by:** openclimatefix
20
- - **Model type:** Fusion model
21
  - **Language(s) (NLP):** en
22
  - **License:** mit
23
 
24
-
25
  # Training Details
26
 
27
  ## Data
28
 
29
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
30
 
31
- The model is trained on the output predictions of our PVNet model which gives GSP (i.e. UK regional) level predictions
32
- of solar power across Great Britain. This model is trained to take those predictions and use them to estimate
33
- the national total with uncertainty estimates.
34
 
 
35
 
36
- ### Preprocessing
 
37
 
38
- The input data is prepared with the `ocf_data_sampler` [3].
 
39
 
 
 
 
40
 
41
  ## Results
42
 
43
- The training logs for the current model can be found here:
44
- - [https://wandb.ai/openclimatefix/pvnet_summation/runs/50rkn19f](https://wandb.ai/openclimatefix/pvnet_summation/runs/50rkn19f)
45
-
46
-
47
- The training logs for all model runs of PVNet_summation can be found [here](https://wandb.ai/openclimatefix/pvnet_summation).
48
-
49
- Some experimental notes can be found at in [the google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing)
50
 
51
 
 
52
  ### Hardware
 
 
 
53
 
54
  Trained on a single NVIDIA Tesla T4
55
 
 
 
56
  ### Software
57
 
58
- - [1] https://github.com/openclimatefix/PVNet_summation
59
- - [2] https://github.com/openclimatefix/PVNet
60
- - [3] https://github.com/openclimatefix/ocf-data-sampler
61
 
62
- ---
63
- **Migration Note**: This model was migrated on 2025-08-08 to pvnet-summation version 1.0.0.post0+git.cd7464d2.dirty
 
 
 
 
 
 
3
  library_name: pytorch
4
  license: mit
5
  ---
6
+ <!--
7
+ Do not remove elements like the above surrounded by two curly braces and do not add any more of them. These entries are required by the library and are automaticall infilled when the model is uploaded to huggingface
8
+ -->
9
 
10
+ <!-- Title - e.g. PVNet-summation -->
 
 
 
 
11
  # PVNet_summation
12
 
13
+ <!-- Provide a longer summary of what this model is/does. -->
14
  ## Model Description
15
 
16
+ <!-- e.g.
17
+ This model uses the output predictions of PVNet to predict the sum from predictions of the parts
18
+ -->
19
+ This model class sums the output of the PVNet model's GSP level predictions to make a national forecast of UK PV output. More information can be found in the model repo [1], the PVNet model repo [2]
20
 
21
  - **Developed by:** openclimatefix
 
22
  - **Language(s) (NLP):** en
23
  - **License:** mit
24
 
 
25
  # Training Details
26
 
27
  ## Data
28
 
29
+ <!-- eg.
30
+ The model is trained on data from 2019-2022 and validated on data from 2022-2023. It uses the
31
+ output predictions from PVNet - see the PVNet model for its inputs
32
 
33
+ -->
 
 
34
 
35
+ The model is trained on the output predictions of our PVNet model which gives GSP (i.e. UK regional) level predictions of solar power across Great Britain. This model is trained to take those predictions and use them to estimate the national total with uncertainty estimates.
36
 
37
+ The model is trained on data from 2019-2021 and validated on data from 2022. It uses the
38
+ output predictions from PVNet - see the PVNet model for its inputs
39
 
40
+ <!-- The preprocessing section is not strictly nessessary but perhaps nice to have -->
41
+ ### Preprocessing
42
 
43
+ <!-- eg.
44
+ Data is prepared with the `ocf_data_sampler/torch_datasets/datasets/pvnet_uk` Dataset [2].
45
+ -->
46
 
47
  ## Results
48
 
49
+ <!-- Do not remove the lines below -->
50
+ The training logs for this model commit can be found here:
51
+ - [https://wandb.ai/openclimatefix/pvnet_summation/runs/gtjmp2r6](https://wandb.ai/openclimatefix/pvnet_summation/runs/gtjmp2r6)
 
 
 
 
52
 
53
 
54
+ <!-- The hardware section is also just nice to have -->
55
  ### Hardware
56
+ <!-- e.g.
57
+ Trained on a single NVIDIA Tesla T4
58
+ -->
59
 
60
  Trained on a single NVIDIA Tesla T4
61
 
62
+
63
+ <!-- Do not remove the section below -->
64
  ### Software
65
 
66
+ This model was trained using the following Open Climate Fix packages:
 
 
67
 
68
+ - [1] https://github.com/openclimatefix/pvnet-summation
69
+ - [2] https://github.com/openclimatefix/ocf-data-sampler
70
+
71
+ <!-- Especially do not change the two lines below -->
72
+ The versions of these packages can be found below:
73
+ - pvnet_summation==1.0.0.post1+git.36f3523d.dirty
74
+ - ocf-data-sampler==0.4.0
datamodule_config.yaml CHANGED
@@ -1,3 +1,3 @@
1
  pvnet_model:
2
  model_id: openclimatefix/pvnet_uk_region
3
- revision: 9d27d1a3b985c3f2c39417c53f6bdc6576b75a9b
 
1
  pvnet_model:
2
  model_id: openclimatefix/pvnet_uk_region
3
+ revision: 4703a866aaa8f8be89e0d034cb2bf605f20f0017
full_experiment_config.yaml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ trainer:
2
+ _target_: lightning.pytorch.trainer.trainer.Trainer
3
+ accelerator: gpu
4
+ devices: auto
5
+ min_epochs: null
6
+ max_epochs: 100
7
+ reload_dataloaders_every_n_epochs: 0
8
+ num_sanity_val_steps: 8
9
+ fast_dev_run: false
10
+ log_every_n_steps: 50
11
+ model:
12
+ _target_: pvnet_summation.training.lightning_module.PVNetSummationLightningModule
13
+ model:
14
+ _target_: pvnet_summation.models.dense_model.DenseModel
15
+ output_quantiles:
16
+ - 0.02
17
+ - 0.1
18
+ - 0.25
19
+ - 0.5
20
+ - 0.75
21
+ - 0.9
22
+ - 0.98
23
+ output_network:
24
+ _target_: pvnet.models.late_fusion.linear_networks.networks.ResFCNet
25
+ _partial_: true
26
+ fc_hidden_features: 128
27
+ n_res_blocks: 2
28
+ res_block_layers: 2
29
+ dropout_frac: 0.2
30
+ predict_difference_from_sum: true
31
+ history_minutes: 120
32
+ forecast_minutes: 480
33
+ interval_minutes: 30
34
+ num_input_locations: 331
35
+ input_quantiles:
36
+ - 0.02
37
+ - 0.1
38
+ - 0.25
39
+ - 0.5
40
+ - 0.75
41
+ - 0.9
42
+ - 0.98
43
+ optimizer:
44
+ _target_: pvnet_summation.optimizers.AdamWReduceLROnPlateau
45
+ lr: 3.0e-05
46
+ weight_decay: 0.25
47
+ amsgrad: true
48
+ patience: 10
49
+ factor: 0.1
50
+ threshold: 0.0
51
+ datamodule:
52
+ configuration: /home/jamesfulton/repos/PVNet/configs/datamodule/configuration/sat_pred.yaml
53
+ batch_size: 32
54
+ num_workers: 28
55
+ prefetch_factor: 4
56
+ persistent_workers: true
57
+ max_num_train_samples: null
58
+ max_num_val_samples: null
59
+ pvnet_model:
60
+ model_id: /home/jamesfulton/tmp/2NWP+cloud
61
+ revision: null
62
+ train_period:
63
+ - null
64
+ - '2021-12-31'
65
+ val_period:
66
+ - '2022-01-01'
67
+ - '2022-12-31'
68
+ callbacks:
69
+ learning_rate_monitor:
70
+ _target_: lightning.pytorch.callbacks.LearningRateMonitor
71
+ logging_interval: epoch
72
+ model_summary:
73
+ _target_: lightning.pytorch.callbacks.ModelSummary
74
+ max_depth: 3
75
+ model_checkpoint:
76
+ _target_: lightning.pytorch.callbacks.ModelCheckpoint
77
+ monitor: ${resolve_monitor_loss:${model.model.output_quantiles}}
78
+ mode: min
79
+ save_top_k: 1
80
+ save_last: true
81
+ every_n_epochs: 1
82
+ verbose: false
83
+ filename: epoch={epoch}-step={step}
84
+ dirpath: checkpoints/${model_name}
85
+ auto_insert_metric_name: false
86
+ save_on_train_epoch_end: false
87
+ logger:
88
+ wandb:
89
+ _target_: lightning.pytorch.loggers.wandb.WandbLogger
90
+ project: pvnet_summation
91
+ name: ${model_name}
92
+ save_dir: ./
93
+ offline: false
94
+ id: null
95
+ log_model: false
96
+ prefix: ''
97
+ job_type: train
98
+ group: ''
99
+ tags: []
100
+ sample_save_dir: /home/jamesfulton/repos/PVNet_summation/presaved_saved_samples
101
+ work_dir: ${hydra:runtime.cwd}
102
+ model_name: 2NWP+cloud
103
+ seed: 2727831
model_config.yaml CHANGED
@@ -13,12 +13,12 @@ output_network:
13
  fc_hidden_features: 128
14
  n_res_blocks: 2
15
  res_block_layers: 2
16
- dropout_frac: 0.1
17
  predict_difference_from_sum: true
18
- num_input_locations: 331
19
  history_minutes: 120
20
  forecast_minutes: 480
21
  interval_minutes: 30
 
22
  input_quantiles:
23
  - 0.02
24
  - 0.1
 
13
  fc_hidden_features: 128
14
  n_res_blocks: 2
15
  res_block_layers: 2
16
+ dropout_frac: 0.2
17
  predict_difference_from_sum: true
 
18
  history_minutes: 120
19
  forecast_minutes: 480
20
  interval_minutes: 30
21
+ num_input_locations: 331
22
  input_quantiles:
23
  - 0.02
24
  - 0.1
model_weights.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f8a7619a295dad538c3906bfba599ee33ad0779c9cb6940cd7c793b180618058
3
  size 19365512
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b0faf8ce2fe7667bda8c6ba120601f6c289e05f3524406e62be17c54e011cfd
3
  size 19365512