Push model using huggingface_hub.
Browse files- README.md +52 -0
- config.json +31 -0
- pytorch_model.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,55 @@
|
|
1 |
---
|
|
|
2 |
license: mit
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
license: mit
|
4 |
+
library_name: pytorch
|
5 |
---
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# PVNet2
|
13 |
+
|
14 |
+
## Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is/does. -->
|
17 |
+
This model class uses satellite data, numericl weather predictions, and recent Grid Service Point( GSP) PV power output to forecast the near-term (~8 hours) PV power output at all GSPs. More information can be found in the model repo [1] and experimental notes in [this google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing).
|
18 |
+
|
19 |
+
- **Developed by:** openclimatefix
|
20 |
+
- **Model type:** Fusion model
|
21 |
+
- **Language(s) (NLP):** en
|
22 |
+
- **License:** mit
|
23 |
+
|
24 |
+
|
25 |
+
# Training Details
|
26 |
+
|
27 |
+
## Data
|
28 |
+
|
29 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
30 |
+
|
31 |
+
The model is trained on data from 2017-2020 and validated on data from 2021. See experimental notes in the [the google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing) for more details.
|
32 |
+
|
33 |
+
|
34 |
+
### Preprocessing
|
35 |
+
|
36 |
+
Data is prepared with the `ocf_datapipes.training.pvnet` datapipe [2].
|
37 |
+
|
38 |
+
|
39 |
+
## Results
|
40 |
+
|
41 |
+
The training logs for the current model can be found [here on wandb](https://wandb.ai/openclimatefix/pvnet2.1/runs/None).
|
42 |
+
|
43 |
+
The training logs for all model runs of PVNet2 can be found [here](https://wandb.ai/openclimatefix/pvnet2.1).
|
44 |
+
|
45 |
+
Some experimental notes can be found at in [the google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing)
|
46 |
+
|
47 |
+
|
48 |
+
### Hardware
|
49 |
+
|
50 |
+
Trained on a single NVIDIA Tesla T4
|
51 |
+
|
52 |
+
### Software
|
53 |
+
|
54 |
+
- [1] https://github.com/openclimatefix/PVNet
|
55 |
+
- [2] https://github.com/openclimatefix/ocf_datapipes
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_target_": "pvnet_summation.models.model.Model",
|
3 |
+
"output_quantiles": [
|
4 |
+
0.1,
|
5 |
+
0.5,
|
6 |
+
0.9
|
7 |
+
],
|
8 |
+
"model_name": "openclimatefix/pvnet_v2",
|
9 |
+
"model_version": "96ac8c67fa8663844ddcfa82aece51ef94f34453",
|
10 |
+
"output_network": {
|
11 |
+
"_target_": "pvnet.models.multimodal.linear_networks.networks.ResFCNet2",
|
12 |
+
"_partial_": true
|
13 |
+
},
|
14 |
+
"output_network_kwargs": {
|
15 |
+
"fc_hidden_features": 128,
|
16 |
+
"n_res_blocks": 2,
|
17 |
+
"res_block_layers": 4,
|
18 |
+
"dropout_frac": 0.0
|
19 |
+
},
|
20 |
+
"predict_difference_from_sum": true,
|
21 |
+
"optimizer": {
|
22 |
+
"_target_": "pvnet.optimizers.AdamWReduceLROnPlateau",
|
23 |
+
"lr": 0.0001,
|
24 |
+
"weight_decay": 0.5,
|
25 |
+
"amsgrad": true,
|
26 |
+
"patience": 5,
|
27 |
+
"factor": 0.1,
|
28 |
+
"threshold": 0.002
|
29 |
+
},
|
30 |
+
"scale_pvnet_outputs": true
|
31 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f5d349fcf92021a910b21fd53c8115ce91f3d0c7e510fbad399bd1d01fffba5
|
3 |
+
size 65360633
|