James Fulton commited on
Commit
c95bf49
·
1 Parent(s): 76a1440

add IAM4VP model

Browse files
README.md CHANGED
@@ -9,12 +9,12 @@ library_name: pytorch
9
 
10
  ## Model Description
11
 
12
- These models are trained to predict future frames of satellite data from past frames. The model uses 3 hours
13
- of recent satellite imagery at 15 minute intervals and predicts 3 hours into the future also at
14
- 15 minute intervals. The satellite inputs and predictions are multispectral with 11 channels.
15
 
16
 
17
- See [1] for the repo used to train the model.
18
 
19
  - **Developed by:** Open Climate Fix and the Alan Turing Institute
20
  - **License:** mit
@@ -27,7 +27,7 @@ See [1] for the repo used to train the model.
27
  This was trained on EUMETSAT satellite imagery derived from the data stored in [this google public
28
  dataset](https://console.cloud.google.com/marketplace/product/bigquery-public-data/eumetsat-seviri-rss?hl=en-GB&inv=1&invt=AbniZA&project=solar-pv-nowcasting&pli=1).
29
 
30
- The data was processed using the protocol in [2]
31
 
32
 
33
  ## Results
@@ -37,7 +37,10 @@ See the READMEs in each model dir for links to the wandb training runs
37
 
38
  ## Usage
39
 
40
- These models rely on [1] being installed. Example usage to load the model is shown below
 
 
 
41
 
42
  ```{python}
43
  import hydra
@@ -47,8 +50,8 @@ from safetensors.torch import load_model
47
 
48
 
49
  REPO_ID = "openclimatefix/cloudcasting_example_models"
50
- REVISION = <commit-id>
51
- MODEL = "simvp_model"
52
 
53
  # Download the model checkpoints
54
  hf_download_dir = snapshot_download(
@@ -57,18 +60,47 @@ hf_download_dir = snapshot_download(
57
  )
58
 
59
  # Create the model object
60
- with open(f"{hf_download_dir}/model_config.yaml", "r", encoding="utf-8") as f:
61
  model = hydra.utils.instantiate(yaml.safe_load(f))
62
 
63
  # Load the model weights
64
  load_model(
65
  model,
66
- filename=f"{hf_download_dir}/model.safetensors",
67
  strict=True,
68
  )
69
  ```
70
 
71
- ### Software
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  - [1] https://github.com/openclimatefix/sat_pred
74
- - [2] https://github.com/alan-turing-institute/cloudcasting
 
 
 
9
 
10
  ## Model Description
11
 
12
+ These models are trained to predict future frames of satellite data from past frames. The model uses
13
+ 3 hours of recent satellite imagery at 15 minute intervals and predicts 3 hours into the future also
14
+ at 15 minute intervals. The satellite inputs and predictions are multispectral with 11 channels.
15
 
16
 
17
+ See [1] and [2] for the repo used to train these model.
18
 
19
  - **Developed by:** Open Climate Fix and the Alan Turing Institute
20
  - **License:** mit
 
27
  This was trained on EUMETSAT satellite imagery derived from the data stored in [this google public
28
  dataset](https://console.cloud.google.com/marketplace/product/bigquery-public-data/eumetsat-seviri-rss?hl=en-GB&inv=1&invt=AbniZA&project=solar-pv-nowcasting&pli=1).
29
 
30
+ The data was processed using the protocol in [3]
31
 
32
 
33
  ## Results
 
37
 
38
  ## Usage
39
 
40
+ The models in this repo have slightly different requirements. The SimVP and eartherformer models
41
+ require [1] to be installed and the IAM4VP model requires [2].
42
+
43
+ The SimVP and earthfomer models can be loaded like:
44
 
45
  ```{python}
46
  import hydra
 
50
 
51
 
52
  REPO_ID = "openclimatefix/cloudcasting_example_models"
53
+ REVISION = None # None for latest or set <commit-id>
54
+ MODEL = "simvp_model" # simvp_model or earthformer_model
55
 
56
  # Download the model checkpoints
57
  hf_download_dir = snapshot_download(
 
60
  )
61
 
62
  # Create the model object
63
+ with open(f"{hf_download_dir}/{MODEL}/model_config.yaml", "r", encoding="utf-8") as f:
64
  model = hydra.utils.instantiate(yaml.safe_load(f))
65
 
66
  # Load the model weights
67
  load_model(
68
  model,
69
+ filename=f"{hf_download_dir}/{MODEL}/model.safetensors",
70
  strict=True,
71
  )
72
  ```
73
 
74
+ The IAM4VP model can be loaded like
75
+
76
+ ```
77
+ from huggingface_hub import snapshot_download
78
+ from ocf_iam4vp import IAM4VPLightning
79
+
80
+
81
+ REPO_ID = "openclimatefix/cloudcasting_example_models"
82
+ REVISION = None # None for latest or set <commit-id>
83
+
84
+ # Download the model checkpoints
85
+ hf_download_dir = snapshot_download(
86
+ repo_id=REPO_ID,
87
+ revision=REVISION,
88
+ )
89
+
90
+
91
+ model = IAM4VPLightning.load_from_checkpoint(
92
+ f"{hf_download_dir}/iam4vp/iam4vp_checkpoint_0.4.3.ckpt",
93
+ num_forecast_steps=12,
94
+ ).model
95
+ ```
96
+
97
+
98
+ See the cloudcasting package [3]
99
+
100
+
101
+ ### Packages
102
 
103
  - [1] https://github.com/openclimatefix/sat_pred
104
+ - [2] https://github.com/alan-turing-institute/ocf-iam4vp
105
+ - [3] https://github.com/alan-turing-institute/cloudcasting
106
+
iam4vp/README.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ library_name: pytorch
5
+ ---
6
+
7
+
8
+ # Cloudcasting
9
+
10
+ ## Model Description
11
+
12
+ <!-- Provide a longer summary of what this model is/does. -->
13
+ This model is trained to predict future frames of satellite data from past frames. It takes 3 hours
14
+ of recent satellkite imagery at 15 minute intervals and predicts 3 hours into the future also at
15
+ 15 minute intervals. The satellite inputs and predictions are multispectral with 11 channels.
16
+
17
+
18
+ See [1] for the repo used to train the model.
19
+
20
+ - **Developed by:** Open Climate Fix and the Alan Turing Institute
21
+ - **License:** mit
22
+
23
+
24
+ # Training Details
25
+
26
+ ## Data
27
+
28
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
29
+ This was trained on EUMETSAT satellite imagery derived from the data stored in [this google public
30
+ dataset](https://console.cloud.google.com/marketplace/product/bigquery-public-data/eumetsat-seviri-rss?hl=en-GB&inv=1&invt=AbniZA&project=solar-pv-nowcasting&pli=1).
31
+
32
+ The data was processed using the protocol in [2]
33
+
34
+
35
+ ### Software
36
+
37
+ - [1] https://github.com/alan-turing-institute/ocf-iam4vp
38
+ - [2] https://github.com/alan-turing-institute/cloudcasting
iam4vp/iam4vp_checkpoint_0.4.3.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:511d803cf6907bb041de85ffdf02b44a2ab201bb3c7254fc5966d9820557dd9b
3
+ size 24569644