BigDong commited on
Commit
52969e3
Β·
1 Parent(s): 17a5a30

update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -10
README.md CHANGED
@@ -12,24 +12,25 @@ library_name: transformers
12
 
13
  <p align="center">
14
  <a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
15
- <a href="" target="_blank">Technical Report</a>
16
  </p>
17
  <p align="center">
18
  πŸ‘‹ Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
19
  </p>
20
 
21
  ## What's New
22
- - [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report on [arXiv]().πŸ”₯πŸ”₯πŸ”₯
23
 
24
  ## MiniCPM4 Series
25
- - [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): TODO **<-- you are here**
26
- - [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): TODO
27
- - [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec)
28
- - [MiniCPM4-8B-Eagle-FRSpec-QAT](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT)
29
- - [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): TODO
30
- - [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): TODO
31
- - [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): TODO
32
- - [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): TODO
 
33
 
34
  ## Introduction
35
  MiniCPM 4 is an extremely efficient edge-side large model that has undergone efficient optimization across four dimensions: model architecture, learning algorithms, training data, and inference systems, achieving ultimate efficiency improvements.
 
12
 
13
  <p align="center">
14
  <a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
15
+ <a href="TODO" target="_blank">Technical Report</a>
16
  </p>
17
  <p align="center">
18
  πŸ‘‹ Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
19
  </p>
20
 
21
  ## What's New
22
+ - [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report on [arXiv](TODO).πŸ”₯πŸ”₯πŸ”₯
23
 
24
  ## MiniCPM4 Series
25
+ MiniCPM4 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
26
+ - [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship of MiniCPM4, with 8B parameters, trained on 8T tokens.
27
+ - [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): The small version of MiniCPM4, with 0.5B parameters, trained on 1T tokens. (**<-- you are here**)
28
+ - [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference for MiniCPM4-8B.
29
+ - [MiniCPM4-8B-Eagle-FRSpec-QAT](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT): Eagle head trained with QAT for FRSpec, efficiently integrate speculation and quantization to achieve ultra acceleration for MiniCPM4-8B.
30
+ - [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization applied to MiniCPM4-0.5B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
31
+ - [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization applied to MiniCPM3-1B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
32
+ - [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): Based on MiniCPM4-8B, accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers.
33
+ - [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): Based on MiniCPM4-8B, accepts users' queries and available MCP tools as input and autonomously calls relevant MCP tools to satisfy user requirements.
34
 
35
  ## Introduction
36
  MiniCPM 4 is an extremely efficient edge-side large model that has undergone efficient optimization across four dimensions: model architecture, learning algorithms, training data, and inference systems, achieving ultimate efficiency improvements.