Update README.md
Browse filesUpdate usage instructions and adjust model size reference
- Updated usage examples for loading the model with Transformers
- Updated vLLM usage, added `add_special_tokens=True` to ensure correct chat formatting (e.g., BOS token)
- Changed all occurrences of "8B" in code/comments to "0.5B" to reflect correct model size
README.md
CHANGED
@@ -1,192 +1,226 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
language:
|
4 |
-
- zh
|
5 |
-
- en
|
6 |
-
pipeline_tag: text-generation
|
7 |
-
library_name: transformers
|
8 |
-
---
|
9 |
-
<div align="center">
|
10 |
-
<img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
|
11 |
-
</div>
|
12 |
-
|
13 |
-
<p align="center">
|
14 |
-
<a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
|
15 |
-
<a href="https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf" target="_blank">Technical Report</a>
|
16 |
-
</p>
|
17 |
-
<p align="center">
|
18 |
-
👋 Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
|
19 |
-
</p>
|
20 |
-
|
21 |
-
## What's New
|
22 |
-
- [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report [here](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf).🔥🔥🔥
|
23 |
-
|
24 |
-
## MiniCPM4 Series
|
25 |
-
MiniCPM4 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
|
26 |
-
- [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship of MiniCPM4, with 8B parameters, trained on 8T tokens.
|
27 |
-
- [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): The small version of MiniCPM4, with 0.5B parameters, trained on 1T tokens. (**<-- you are here**)
|
28 |
-
- [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference for MiniCPM4-8B.
|
29 |
-
- [MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu): Eagle head trained with QAT for FRSpec, efficiently integrate speculation and quantization to achieve ultra acceleration for MiniCPM4-8B.
|
30 |
-
- [MiniCPM4-8B-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-vLLM): Eagle head in vLLM format, accelerating speculative inference for MiniCPM4-8B.
|
31 |
-
- [MiniCPM4-8B-marlin-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-marlin-Eagle-vLLM): Quantized Eagle head for vLLM format, accelerating speculative inference for MiniCPM4-8B.
|
32 |
-
- [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization applied to MiniCPM4-0.5B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
33 |
-
- [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization applied to MiniCPM3-1B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
34 |
-
- [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): Based on MiniCPM4-8B, accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers.
|
35 |
-
- [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): Based on MiniCPM4-8B, accepts users' queries and available MCP tools as input and autonomously calls relevant MCP tools to satisfy users' requirements.
|
36 |
-
|
37 |
-
## Introduction
|
38 |
-
MiniCPM 4 is an extremely efficient edge-side large model that has undergone efficient optimization across four dimensions: model architecture, learning algorithms, training data, and inference systems, achieving ultimate efficiency improvements.
|
39 |
-
|
40 |
-
- 🏗️ **Efficient Model Architecture:**
|
41 |
-
- InfLLM v2 -- Trainable Sparse Attention Mechanism: Adopts a trainable sparse attention mechanism architecture where each token only needs to compute relevance with less than 5% of tokens in 128K long text processing, significantly reducing computational overhead for long texts
|
42 |
-
|
43 |
-
- 🧠 **Efficient Learning Algorithms:**
|
44 |
-
- Model Wind Tunnel 2.0 -- Efficient Predictable Scaling: Introduces scaling prediction methods for performance of downstream tasks, enabling more precise model training configuration search
|
45 |
-
- BitCPM -- Ultimate Ternary Quantization: Compresses model parameter bit-width to 3 values, achieving 90% extreme model bit-width reduction
|
46 |
-
- Efficient Training Engineering Optimization: Adopts FP8 low-precision computing technology combined with Multi-token Prediction training strategy
|
47 |
-
|
48 |
-
- 📚 **High-Quality Training Data:**
|
49 |
-
- UltraClean -- High-quality Pre-training Data Filtering and Generation: Builds iterative data cleaning strategies based on efficient data verification, open-sourcing high-quality Chinese and English pre-training dataset [UltraFinweb](https://huggingface.co/datasets/openbmb/Ultra-FineWeb)
|
50 |
-
- UltraChat v2 -- High-quality Supervised Fine-tuning Data Generation: Constructs large-scale high-quality supervised fine-tuning datasets covering multiple dimensions including knowledge-intensive data, reasoning-intensive data, instruction-following data, long text understanding data, and tool calling data
|
51 |
-
|
52 |
-
- ⚡ **Efficient Inference System:**
|
53 |
-
- CPM.cu -- Lightweight and Efficient CUDA Inference Framework: Integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding
|
54 |
-
- ArkInfer -- Cross-platform Deployment System: Supports efficient deployment across multiple backend environments, providing flexible cross-platform adaptation capabilities
|
55 |
-
|
56 |
-
## Usage
|
57 |
-
### Inference with Transformers
|
58 |
-
```python
|
59 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
60 |
-
import torch
|
61 |
-
torch.manual_seed(0)
|
62 |
-
|
63 |
-
path = 'openbmb/MiniCPM4-0.5B'
|
64 |
-
device = "cuda"
|
65 |
-
tokenizer = AutoTokenizer.from_pretrained(path)
|
66 |
-
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
|
67 |
-
|
68 |
-
# User can directly use the chat interface
|
69 |
-
responds, history = model.chat(tokenizer, "Write an article about Artificial Intelligence.", temperature=0.7, top_p=0.7)
|
70 |
-
print(responds)
|
71 |
-
|
72 |
-
# User can also use the generate interface
|
73 |
-
# messages = [
|
74 |
-
# {"role": "user", "content": "Write an article about Artificial Intelligence."},
|
75 |
-
# ]
|
76 |
-
#
|
77 |
-
|
78 |
-
#
|
79 |
-
#
|
80 |
-
#
|
81 |
-
#
|
82 |
-
|
83 |
-
#
|
84 |
-
#
|
85 |
-
#
|
86 |
-
#
|
87 |
-
|
88 |
-
#
|
89 |
-
#
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
```
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
```
|
107 |
-
|
108 |
-
|
109 |
-
```
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
library_name: transformers
|
8 |
+
---
|
9 |
+
<div align="center">
|
10 |
+
<img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
|
11 |
+
</div>
|
12 |
+
|
13 |
+
<p align="center">
|
14 |
+
<a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
|
15 |
+
<a href="https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf" target="_blank">Technical Report</a>
|
16 |
+
</p>
|
17 |
+
<p align="center">
|
18 |
+
👋 Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
|
19 |
+
</p>
|
20 |
+
|
21 |
+
## What's New
|
22 |
+
- [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report [here](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf).🔥🔥🔥
|
23 |
+
|
24 |
+
## MiniCPM4 Series
|
25 |
+
MiniCPM4 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
|
26 |
+
- [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship of MiniCPM4, with 8B parameters, trained on 8T tokens.
|
27 |
+
- [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): The small version of MiniCPM4, with 0.5B parameters, trained on 1T tokens. (**<-- you are here**)
|
28 |
+
- [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference for MiniCPM4-8B.
|
29 |
+
- [MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu): Eagle head trained with QAT for FRSpec, efficiently integrate speculation and quantization to achieve ultra acceleration for MiniCPM4-8B.
|
30 |
+
- [MiniCPM4-8B-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-vLLM): Eagle head in vLLM format, accelerating speculative inference for MiniCPM4-8B.
|
31 |
+
- [MiniCPM4-8B-marlin-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-marlin-Eagle-vLLM): Quantized Eagle head for vLLM format, accelerating speculative inference for MiniCPM4-8B.
|
32 |
+
- [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization applied to MiniCPM4-0.5B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
33 |
+
- [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization applied to MiniCPM3-1B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
34 |
+
- [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): Based on MiniCPM4-8B, accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers.
|
35 |
+
- [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): Based on MiniCPM4-8B, accepts users' queries and available MCP tools as input and autonomously calls relevant MCP tools to satisfy users' requirements.
|
36 |
+
|
37 |
+
## Introduction
|
38 |
+
MiniCPM 4 is an extremely efficient edge-side large model that has undergone efficient optimization across four dimensions: model architecture, learning algorithms, training data, and inference systems, achieving ultimate efficiency improvements.
|
39 |
+
|
40 |
+
- 🏗️ **Efficient Model Architecture:**
|
41 |
+
- InfLLM v2 -- Trainable Sparse Attention Mechanism: Adopts a trainable sparse attention mechanism architecture where each token only needs to compute relevance with less than 5% of tokens in 128K long text processing, significantly reducing computational overhead for long texts
|
42 |
+
|
43 |
+
- 🧠 **Efficient Learning Algorithms:**
|
44 |
+
- Model Wind Tunnel 2.0 -- Efficient Predictable Scaling: Introduces scaling prediction methods for performance of downstream tasks, enabling more precise model training configuration search
|
45 |
+
- BitCPM -- Ultimate Ternary Quantization: Compresses model parameter bit-width to 3 values, achieving 90% extreme model bit-width reduction
|
46 |
+
- Efficient Training Engineering Optimization: Adopts FP8 low-precision computing technology combined with Multi-token Prediction training strategy
|
47 |
+
|
48 |
+
- 📚 **High-Quality Training Data:**
|
49 |
+
- UltraClean -- High-quality Pre-training Data Filtering and Generation: Builds iterative data cleaning strategies based on efficient data verification, open-sourcing high-quality Chinese and English pre-training dataset [UltraFinweb](https://huggingface.co/datasets/openbmb/Ultra-FineWeb)
|
50 |
+
- UltraChat v2 -- High-quality Supervised Fine-tuning Data Generation: Constructs large-scale high-quality supervised fine-tuning datasets covering multiple dimensions including knowledge-intensive data, reasoning-intensive data, instruction-following data, long text understanding data, and tool calling data
|
51 |
+
|
52 |
+
- ⚡ **Efficient Inference System:**
|
53 |
+
- CPM.cu -- Lightweight and Efficient CUDA Inference Framework: Integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding
|
54 |
+
- ArkInfer -- Cross-platform Deployment System: Supports efficient deployment across multiple backend environments, providing flexible cross-platform adaptation capabilities
|
55 |
+
|
56 |
+
## Usage
|
57 |
+
### Inference with Transformers
|
58 |
+
```python
|
59 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
60 |
+
import torch
|
61 |
+
torch.manual_seed(0)
|
62 |
+
|
63 |
+
path = 'openbmb/MiniCPM4-0.5B'
|
64 |
+
device = "cuda"
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
|
67 |
+
|
68 |
+
# User can directly use the chat interface
|
69 |
+
responds, history = model.chat(tokenizer, "Write an article about Artificial Intelligence.", temperature=0.7, top_p=0.7)
|
70 |
+
print(responds)
|
71 |
+
|
72 |
+
# User can also use the generate interface
|
73 |
+
# messages = [
|
74 |
+
# {"role": "user", "content": "Write an article about Artificial Intelligence."},
|
75 |
+
# ]
|
76 |
+
# prompt_text = tokenizer.apply_chat_template(
|
77 |
+
# messages,
|
78 |
+
# tokenize=False,
|
79 |
+
# add_generation_prompt=True,
|
80 |
+
# )
|
81 |
+
# model_inputs = tokenizer([prompt_text], return_tensors="pt").to(device)
|
82 |
+
|
83 |
+
# model_outputs = model.generate(
|
84 |
+
# **model_inputs,
|
85 |
+
# max_new_tokens=1024,
|
86 |
+
# top_p=0.7,
|
87 |
+
# temperature=0.7
|
88 |
+
# )
|
89 |
+
# output_token_ids = [
|
90 |
+
# model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs['input_ids']))
|
91 |
+
# ]
|
92 |
+
|
93 |
+
# responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
|
94 |
+
# print(responses)
|
95 |
+
```
|
96 |
+
|
97 |
+
### Inference with [SGLang](https://github.com/sgl-project/sglang)
|
98 |
+
|
99 |
+
For now, you need to install our forked version of SGLang.
|
100 |
+
```bash
|
101 |
+
git clone -b openbmb https://github.com/OpenBMB/sglang.git
|
102 |
+
cd sglang
|
103 |
+
|
104 |
+
pip install --upgrade pip
|
105 |
+
pip install -e "python[all]"
|
106 |
+
```
|
107 |
+
|
108 |
+
You can start the inference server by running the following command:
|
109 |
+
```bash
|
110 |
+
python -m sglang.launch_server --model openbmb/MiniCPM4-0.5B --trust-remote-code --port 30000 --chat-template chatml
|
111 |
+
```
|
112 |
+
|
113 |
+
Then you can use the chat interface by running the following command:
|
114 |
+
```python
|
115 |
+
import openai
|
116 |
+
|
117 |
+
client = openai.Client(base_url=f"http://localhost:30000/v1", api_key="None")
|
118 |
+
|
119 |
+
response = client.chat.completions.create(
|
120 |
+
model="openbmb/MiniCPM4-0.5B",
|
121 |
+
messages=[
|
122 |
+
{"role": "user", "content": "Write an article about Artificial Intelligence."},
|
123 |
+
],
|
124 |
+
temperature=0.7,
|
125 |
+
max_tokens=1024,
|
126 |
+
)
|
127 |
+
|
128 |
+
print(response.choices[0].message.content)
|
129 |
+
```
|
130 |
+
|
131 |
+
### Inference with [vLLM](https://github.com/vllm-project/vllm)
|
132 |
+
For now, you need to install the latest version of vLLM.
|
133 |
+
```
|
134 |
+
pip install -U vllm \
|
135 |
+
--pre \
|
136 |
+
--extra-index-url https://wheels.vllm.ai/nightly
|
137 |
+
```
|
138 |
+
|
139 |
+
Then you can inference MiniCPM4-0.5B with vLLM:
|
140 |
+
```python
|
141 |
+
from transformers import AutoTokenizer
|
142 |
+
from vllm import LLM, SamplingParams
|
143 |
+
|
144 |
+
model_name = "openbmb/MiniCPM4-0.5B"
|
145 |
+
prompt = [{"role": "user", "content": "Please recommend 5 tourist attractions in Beijing. "}]
|
146 |
+
|
147 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
148 |
+
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
|
149 |
+
|
150 |
+
llm = LLM(
|
151 |
+
model=model_name,
|
152 |
+
trust_remote_code=True,
|
153 |
+
max_num_batched_tokens=32768,
|
154 |
+
dtype="bfloat16",
|
155 |
+
gpu_memory_utilization=0.8,
|
156 |
+
)
|
157 |
+
sampling_params = SamplingParams(top_p=0.7, temperature=0.7, max_tokens=1024, repetition_penalty=1.02)
|
158 |
+
|
159 |
+
outputs = llm.generate(prompts=input_text, sampling_params=sampling_params)
|
160 |
+
|
161 |
+
print(outputs[0].outputs[0].text)
|
162 |
+
```
|
163 |
+
|
164 |
+
Also, you can start the inference server by running the following command:
|
165 |
+
> **Note**: In vLLM's chat API, `add_special_tokens` is `False` by default. This means important special tokens—such as the beginning-of-sequence (BOS) token—will not be added automatically. To ensure the input prompt is correctly formatted for the model, you should explicitly set `extra_body={"add_special_tokens": True}`.
|
166 |
+
|
167 |
+
```bash
|
168 |
+
vllm serve openbmb/MiniCPM4-0.5B
|
169 |
+
```
|
170 |
+
|
171 |
+
Then you can use the chat interface by running the following code:
|
172 |
+
|
173 |
+
```python
|
174 |
+
import openai
|
175 |
+
|
176 |
+
client = openai.Client(base_url="http://localhost:8000/v1", api_key="EMPTY")
|
177 |
+
|
178 |
+
response = client.chat.completions.create(
|
179 |
+
model="openbmb/MiniCPM4-0.5B",
|
180 |
+
messages=[
|
181 |
+
{"role": "user", "content": "Write an article about Artificial Intelligence."},
|
182 |
+
],
|
183 |
+
temperature=0.7,
|
184 |
+
max_tokens=1024,
|
185 |
+
extra_body=dict(add_special_tokens=True), # Ensures special tokens are added for chat template
|
186 |
+
|
187 |
+
)
|
188 |
+
|
189 |
+
print(response.choices[0].message.content)
|
190 |
+
```
|
191 |
+
|
192 |
+
|
193 |
+
## Evaluation Results
|
194 |
+
On two typical end-side chips, Jetson AGX Orin and RTX 4090, MiniCPM4 demonstrates significantly faster processing speed compared to similar-size models in long text processing tasks. As text length increases, MiniCPM4's efficiency advantage becomes more pronounced. On the Jetson AGX Orin platform, compared to Qwen3-8B, MiniCPM4 achieves approximately 7x decoding speed improvement.
|
195 |
+
|
196 |
+

|
197 |
+
|
198 |
+
#### Comprehensive Evaluation
|
199 |
+
MiniCPM4 launches end-side versions with 8B and 0.5B parameter scales, both achieving best-in-class performance in their respective categories.
|
200 |
+
|
201 |
+

|
202 |
+
|
203 |
+
#### Long Text Evaluation
|
204 |
+
MiniCPM4 is pre-trained on 32K long texts and achieves length extension through YaRN technology. In the 128K long text needle-in-a-haystack task, MiniCPM4 demonstrates outstanding performance.
|
205 |
+
|
206 |
+

|
207 |
+
|
208 |
+
## Statement
|
209 |
+
- As a language model, MiniCPM generates content by learning from a vast amount of text.
|
210 |
+
- However, it does not possess the ability to comprehend or express personal opinions or value judgments.
|
211 |
+
- Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers.
|
212 |
+
- Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own.
|
213 |
+
|
214 |
+
## LICENSE
|
215 |
+
- This repository and MiniCPM models are released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
216 |
+
|
217 |
+
## Citation
|
218 |
+
- Please cite our [paper](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf) if you find our work valuable.
|
219 |
+
|
220 |
+
```bibtex
|
221 |
+
@article{minicpm4,
|
222 |
+
title={{MiniCPM4}: Ultra-Efficient LLMs on End Devices},
|
223 |
+
author={MiniCPM Team},
|
224 |
+
year={2025}
|
225 |
+
}
|
226 |
+
```
|