# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for MiniCPMO.
"""

import math
import re
from typing import List
from typing import Literal
from typing import Optional
from typing import Union

import numpy as np
import torch
import torchaudio
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PreTokenizedInput
from transformers.tokenization_utils_base import TextInput
from transformers.utils import TensorType

from .image_processing_minicpmv import MiniCPMOBatchFeature


class MiniCPMOProcessor(ProcessorMixin):
    r"""
    Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.

    [`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
    [`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.

    Args:
        image_processor ([`MiniCPMVImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerWrapper`], *optional*):
            The tokenizer is a required input.
    """

    attributes = ["image_processor", "feature_extractor", "tokenizer"]
    feature_extractor_class = "WhisperFeatureExtractor"
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(self, image_processor=None, feature_extractor=None, tokenizer=None):
        super().__init__(image_processor, feature_extractor, tokenizer)
        self.version = image_processor.version

    def __call__(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
        images: ImageInput = None,
        audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]] = None,
        audio_parts: Optional[list] = None,
        max_length: Optional[int] = None,
        do_pad: Optional[bool] = True,
        max_slice_nums: int = None,
        use_image_id: bool = True,
        chunk_input: bool = False,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
        sampling_rate: Optional[int] = 16000,
        **kwargs,
    ) -> MiniCPMOBatchFeature:
        if images is not None:
            image_inputs = self.image_processor(
                images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors
            )
        else:
            image_inputs = None

        if audios is not None:
            audio_features, audio_feature_lens, audio_phs = self.audio_feature_extract(
                audios, audio_parts, chunk_input, sampling_rate
            )
        else:
            audio_features, audio_feature_lens, audio_phs = [], [], []

        model_inputs = self._convert_omni_to_inputs(
            image_inputs,
            audio_phs,
            text,
            max_slice_nums=max_slice_nums,
            use_image_id=use_image_id,
            max_length=max_length,
            **kwargs,
        )

        model_inputs["audio_features"] = audio_features
        model_inputs["audio_feature_lens"] = audio_feature_lens

        return MiniCPMOBatchFeature(data={**model_inputs})

    def get_audio_placeholder(self, audio_lens, chunk_input, chunk_length):
        pool_step = 2
        feature_lens = math.ceil(audio_lens / self.feature_extractor.hop_length)

        feature_lens = (feature_lens - 1) // 2 + 1
        output_lens = (feature_lens - pool_step) // pool_step + 1

        if chunk_input:
            fbank_feat_in_chunk = int(chunk_length * 100)
            cnn_feat_in_chunk = (fbank_feat_in_chunk - 1) // 2 + 1
            audio_embeds_in_chunk = (cnn_feat_in_chunk - pool_step) // pool_step + 1
            num_audio_chunks = (output_lens + audio_embeds_in_chunk - 1) // audio_embeds_in_chunk

            place_holders = ""
            total_unk_len = 0
            for _ in range(num_audio_chunks):
                unk_len = min(audio_embeds_in_chunk, output_lens - total_unk_len)
                place_holders += self.tokenizer.audio_start + "<unk>" * unk_len + self.tokenizer.audio_end
                total_unk_len += unk_len
            audio_placeholder = place_holders
        else:
            audio_placeholder = self.tokenizer.audio_start + "<unk>" * output_lens + self.tokenizer.audio_end

        return audio_placeholder

    def audio_feature_extract(
        self,
        audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]],
        audio_parts: Optional[list] = None,
        chunk_input: Optional[bool] = False,
        sampling_rate: Optional[int] = None,
        chunk_length: Optional[int] = 1,
        **kwargs,
    ):
        if isinstance(audios, np.ndarray):
            audios_list = [[audios]]
        elif isinstance(audios[0], np.ndarray):
            audios_list = [audios]
        else:
            audios_list = audios

        if audio_parts is not None:
            assert len(audio_parts) == len(audios_list)
            for parts, audios in zip(audio_parts, audios_list):
                assert len(parts) == len(audios)

        audio_feature_lens_list = []
        audio_ph_list = []

        audio_features_all = []

        # audio placeholder not dependent on audio_parts
        for audios in audios_list:
            if audios:
                audio_ph_list.append([self.get_audio_placeholder(len(a), chunk_input, chunk_length) for a in audios])
            else:
                audio_ph_list.append([])

        for idx, audios in enumerate(audios_list):
            if audio_parts is not None:
                # same audio part merge
                audio_part = audio_parts[idx]
                merge_audio = []
                cur_audio = []
                for aid, (part, audio) in enumerate(zip(audio_part, audios)):
                    if aid == 0 or audio_part[aid] == audio_part[aid - 1]:
                        cur_audio.append(audio)
                    else:
                        merge_audio.append(np.hstack(cur_audio))
                        cur_audio = [audio]
                if cur_audio:
                    merge_audio.append(np.hstack(cur_audio))

            else:
                merge_audio = audios

            audio_feature_lens = []

            # If the audio exceeds 30 seconds, split it into chunks every 30 seconds.
            final_merge_audio = []
            max_audio_inp_len = 30 * sampling_rate
            for audio in merge_audio:
                if len(audio) <= max_audio_inp_len:
                    final_merge_audio.append(audio)
                else:
                    for i in range(math.ceil(len(audio) / max_audio_inp_len)):
                        final_merge_audio.append(audio[i * max_audio_inp_len : (i + 1) * max_audio_inp_len])

            if audios:
                audio_inputs = self.feature_extractor(
                    final_merge_audio,
                    sampling_rate=sampling_rate,
                    return_attention_mask=True,
                    padding="max_length",
                    return_tensors="pt",
                    **kwargs,
                )
                audio_feature = audio_inputs["input_features"]
                actual_lens = audio_inputs["attention_mask"].sum(dim=1)

                for feat, lens in zip(audio_feature, actual_lens):
                    audio_features_all.append(feat[:, :lens])
                    audio_feature_lens.append(lens)

                audio_feature_lens = torch.hstack(audio_feature_lens)
                audio_feature_lens_list.append(audio_feature_lens)
            else:
                audio_feature_lens_list.append([])

        if audio_features_all:
            audio_features = [i.permute(1, 0) for i in audio_features_all]
            audio_features = torch.nn.utils.rnn.pad_sequence(
                audio_features, batch_first=True, padding_value=0.0
            ).permute(0, 2, 1)
        else:
            audio_features = []

        return audio_features, audio_feature_lens_list, audio_ph_list

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        output_ids = args[0]
        result_text = []
        for result in output_ids:
            result = result[result != 0]
            if result[0] == self.tokenizer.bos_id:
                result = result[1:]
            if result[-1] == self.tokenizer.eos_id:
                result = result[:-1]
            result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
        return result_text
        # return self.tokenizer.batch_decode(*args, **kwargs)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        result = args[0]
        result = result[result != 0]
        if result[0] == self.tokenizer.bos_id:
            result = result[1:]
        if result[-1] == self.tokenizer.eos_id or (
            hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id
        ):
            result = result[:-1]
        return self.tokenizer.decode(result, *args[1:], **kwargs).strip()

    def _convert(self, input_str, max_inp_length: Optional[int] = None, **kwargs):
        input_ids = self.tokenizer.encode(input_str, **kwargs)
        if max_inp_length is not None:
            input_ids = input_ids[:max_inp_length]
        input_ids = torch.tensor(input_ids, dtype=torch.int32)

        ## image bound
        start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
        end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)

        image_start_idx = torch.where(start_cond)[0]
        image_start_idx += 1
        image_end_idx = torch.where(end_cond)[0]

        valid_image_nums = max(len(image_start_idx), len(image_end_idx))

        image_bounds = torch.hstack(
            [
                image_start_idx[:valid_image_nums].unsqueeze(-1),
                image_end_idx[:valid_image_nums].unsqueeze(-1),
            ]
        )

        ##  audio bound
        audio_start_idx = torch.where(input_ids == self.tokenizer.audio_start_id)[0]
        audio_end_idx = torch.where(input_ids == self.tokenizer.audio_end_id)[0]
        assert len(audio_start_idx) == len(audio_end_idx)
        audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])

        spk_start_idx = torch.where(input_ids == self.tokenizer.spk_start_id)[0]
        spk_end_idx = torch.where(input_ids == self.tokenizer.spk_end_id)[0]
        assert len(spk_start_idx) == len(spk_end_idx)
        spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])

        return input_ids, image_bounds, audio_bounds, spk_bounds

    def _convert_omni_to_inputs(
        self,
        images,
        audio_phs,
        texts: Union[str, List[str]],
        truncation=None,
        max_length=None,
        max_slice_nums=None,
        use_image_id=None,
        return_tensors=None,
        **kwargs,
    ):
        if images is None and audio_phs is None:
            model_inputs = self.tokenizer(
                texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs
            )
            return MiniCPMOBatchFeature(data={**model_inputs})

        image_tag = "(<image>./</image>)"
        image_pattern = "\(<image>./</image>\)"
        audio_tag = "(<audio>./</audio>)"
        audio_pattern = "\(<audio>./</audio>\)"
        split_pattern = f"({image_pattern}|{audio_pattern})"

        if isinstance(texts, str):
            texts = [texts]

        bs = len(texts)
        if images is not None:
            images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
        else:
            images, image_sizes, tgt_sizes = [[]] * bs, [[]] * bs, [[]] * bs

        input_ids_list = []
        image_bounds_list = []
        audio_bounds_list = []
        spk_bounds_list = []

        for index, text in enumerate(texts):
            text_chunks = re.split(split_pattern, text)

            image_tags = re.findall(image_pattern, text)
            audio_tags = re.findall(audio_pattern, text)

            if image_tags:
                assert images is not None
                assert len(image_tags) == len(image_sizes[index])
            if audio_tags:
                assert audio_phs is not None
                assert len(audio_tags) == len(audio_phs[index])

            image_id = 0
            audio_id = 0
            for i, chunk in enumerate(text_chunks):
                if chunk == image_tag:
                    image_placeholder = self.image_processor.get_slice_image_placeholder(
                        image_sizes[index][image_id], image_id, max_slice_nums, use_image_id
                    )
                    image_id += 1
                    text_chunks[i] = image_placeholder
                elif chunk == audio_tag:
                    audio_placeholder = audio_phs[index][audio_id]
                    audio_id += 1
                    text_chunks[i] = audio_placeholder

            final_text = "".join(text_chunks)
            input_ids, image_bounds, audio_bounds, spk_bounds = self._convert(final_text, max_length, **kwargs)

            input_ids_list.append(input_ids)
            image_bounds_list.append(image_bounds)
            audio_bounds_list.append(audio_bounds)
            spk_bounds_list.append(spk_bounds)

        padded_input_ids, padding_lengths = self.pad(input_ids_list, padding_side="left")
        attention_mask = torch.ones_like(padded_input_ids, dtype=torch.bool)
        for i, length in enumerate(padding_lengths):
            image_bounds_list[i] = image_bounds_list[i] + length
            audio_bounds_list[i] = audio_bounds_list[i] + length
            spk_bounds_list[i] = spk_bounds_list[i] + length
            attention_mask[i, :length] = False

        data = {
            "input_ids": padded_input_ids,
            "attention_mask": attention_mask,
            "pixel_values": images,
            "image_sizes": image_sizes,
            "image_bound": image_bounds_list,
            "tgt_sizes": tgt_sizes,
            "audio_bounds": audio_bounds_list,
            "spk_bounds": spk_bounds_list,
        }

        return data

    @property
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        feature_extractor_input_names = self.feature_extractor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + feature_extractor_input_names))

    def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
        items = []
        if isinstance(inputs[0], list):
            assert isinstance(inputs[0][0], torch.Tensor)
            for it in inputs:
                for tr in it:
                    items.append(tr)
        else:
            assert isinstance(inputs[0], torch.Tensor)
            items = inputs

        batch_size = len(items)
        shape = items[0].shape
        dim = len(shape)
        assert dim <= 2
        if max_length is None:
            max_length = 0
        max_length = max(max_length, max(item.shape[-1] for item in items))
        min_length = min(item.shape[-1] for item in items)
        dtype = items[0].dtype

        if dim == 0:
            return torch.stack([item for item in items], dim=0), [0]
        elif dim == 1:
            if max_length == min_length:
                return torch.stack([item for item in items], dim=0), [0] * batch_size
            tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
        else:
            tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value

        padding_length = []
        for i, item in enumerate(items):
            if dim == 1:
                if padding_side == "left":
                    tensor[i, -len(item) :] = item.clone()
                else:
                    tensor[i, : len(item)] = item.clone()
            elif dim == 2:
                if padding_side == "left":
                    tensor[i, -len(item) :, :] = item.clone()
                else:
                    tensor[i, : len(item), :] = item.clone()
            padding_length.append(tensor.shape[-1] - len(item))

        return tensor, padding_length


class MelSpectrogramFeatures(torch.nn.Module):
    def __init__(
        self,
        sample_rate=24000,
        n_fft=1024,
        hop_length=256,
        n_mels=100,
        padding: Literal["center", "same"] = "center",
    ):
        super().__init__()
        if padding not in ["center", "same"]:
            raise ValueError("Padding must be 'center' or 'same'.")
        self.padding = padding
        self.mel_spec = torchaudio.transforms.MelSpectrogram(
            sample_rate=sample_rate,
            n_fft=n_fft,
            hop_length=hop_length,
            n_mels=n_mels,
            center=padding == "center",
            power=1,
        )

    def __call__(self, audio: torch.Tensor) -> torch.Tensor:
        """
        audio: Tensor([num_channels, num_samples])
        """
        return super().__call__(audio)

    def forward(self, audio: torch.Tensor) -> torch.Tensor:
        """
        audio: Tensor([num_channels, num_samples])
        """
        mel: torch.Tensor = self.mel_spec(audio)
        features = torch.log(torch.clip(mel, min=1e-5))
        return features


class ChatTTSProcessor:
    def __init__(self, text_tokenizer):
        self.audio_processor = MelSpectrogramFeatures()
        self.text_tokenizer = text_tokenizer

    def __call__(self, text_list, audio_list):
        assert len(text_list) == len(audio_list)
        input_ids_varlen = []
        for text in text_list:
            input_ids_ = self.text_tokenizer.encode(text, return_tensors="pt", add_special_tokens=False)  # [1, seq_len]
            input_ids_ = input_ids_.squeeze(0)  # [seq_len]
            input_ids_varlen.append(input_ids_)

        audio_features_varlen = []
        for audio in audio_list:
            assert audio.shape.__len__() == 1  # [seq_len]
            try:
                mel = self.audio_processor(audio)  # [100(num_mel_bins), seq_len_mel]
            except Exception as e:
                raise e
            audio_features_varlen.append(mel)

        return {
            "tts_input_ids_varlen": input_ids_varlen,  # return List[Tensor]
            "tts_input_features_varlen": audio_features_varlen,  # return List[Tensor]
        }