Update README.md
Browse files
README.md
CHANGED
@@ -89,40 +89,20 @@ flash-attn>2.3.5
|
|
89 |
#### Huggingface Transformers
|
90 |
|
91 |
```python
|
92 |
-
from transformers import
|
93 |
import torch
|
94 |
import numpy as np
|
95 |
|
96 |
-
|
97 |
-
class MiniCPMRerankerLLamaTokenizer(LlamaTokenizer):
|
98 |
-
def build_inputs_with_special_tokens(
|
99 |
-
self, token_ids_0, token_ids_1 = None
|
100 |
-
):
|
101 |
-
"""
|
102 |
-
- single sequence: `<s> X </s>`
|
103 |
-
- pair of sequences: `<s> A </s> B`
|
104 |
-
|
105 |
-
Args:
|
106 |
-
token_ids_0 (`List[int]`):
|
107 |
-
List of IDs to which the special tokens will be added.
|
108 |
-
token_ids_1 (`List[int]`, *optional*):
|
109 |
-
Optional second list of IDs for sequence pairs.
|
110 |
-
|
111 |
-
Returns:
|
112 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
113 |
-
"""
|
114 |
-
|
115 |
-
if token_ids_1 is None:
|
116 |
-
return super().build_inputs_with_special_tokens(token_ids_0)
|
117 |
-
bos = [self.bos_token_id]
|
118 |
-
sep = [self.eos_token_id]
|
119 |
-
return bos + token_ids_0 + sep + token_ids_1
|
120 |
|
121 |
model_name = "openbmb/MiniCPM-Reranker"
|
122 |
-
tokenizer =
|
123 |
tokenizer.padding_side = "right"
|
124 |
|
125 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True,
|
|
|
|
|
|
|
126 |
model.eval()
|
127 |
|
128 |
@torch.no_grad()
|
@@ -154,37 +134,14 @@ print(np.array(scores)) # [[[-4.7460938][-8.8515625]]]
|
|
154 |
|
155 |
```python
|
156 |
from sentence_transformers import CrossEncoder
|
157 |
-
from transformers import LlamaTokenizer
|
158 |
import torch
|
159 |
|
160 |
-
#
|
161 |
-
class MiniCPMRerankerLLamaTokenizer(LlamaTokenizer):
|
162 |
-
def build_inputs_with_special_tokens(
|
163 |
-
self, token_ids_0, token_ids_1 = None
|
164 |
-
):
|
165 |
-
"""
|
166 |
-
- single sequence: `<s> X </s>`
|
167 |
-
- pair of sequences: `<s> A </s> B`
|
168 |
-
|
169 |
-
Args:
|
170 |
-
token_ids_0 (`List[int]`):
|
171 |
-
List of IDs to which the special tokens will be added.
|
172 |
-
token_ids_1 (`List[int]`, *optional*):
|
173 |
-
Optional second list of IDs for sequence pairs.
|
174 |
-
|
175 |
-
Returns:
|
176 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
177 |
-
"""
|
178 |
-
|
179 |
-
if token_ids_1 is None:
|
180 |
-
return super().build_inputs_with_special_tokens(token_ids_0)
|
181 |
-
bos = [self.bos_token_id]
|
182 |
-
sep = [self.eos_token_id]
|
183 |
-
return bos + token_ids_0 + sep + token_ids_1
|
184 |
-
|
185 |
model_name = "openbmb/MiniCPM-Reranker"
|
186 |
-
model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"
|
187 |
-
|
|
|
|
|
188 |
model.tokenizer.padding_side = "right"
|
189 |
|
190 |
query = "中国的首都是哪里?"
|
|
|
89 |
#### Huggingface Transformers
|
90 |
|
91 |
```python
|
92 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
93 |
import torch
|
94 |
import numpy as np
|
95 |
|
96 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
model_name = "openbmb/MiniCPM-Reranker"
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
100 |
tokenizer.padding_side = "right"
|
101 |
|
102 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16).to("cuda")
|
103 |
+
# You can also use the following code to use flash_attention_2
|
104 |
+
# model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True,attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
|
105 |
+
|
106 |
model.eval()
|
107 |
|
108 |
@torch.no_grad()
|
|
|
134 |
|
135 |
```python
|
136 |
from sentence_transformers import CrossEncoder
|
|
|
137 |
import torch
|
138 |
|
139 |
+
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
model_name = "openbmb/MiniCPM-Reranker"
|
141 |
+
model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"torch_dtype": torch.float16})
|
142 |
+
# You can also use the following code to use flash_attention_2
|
143 |
+
#model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"attn_implementation":"flash_attention_2","torch_dtype": torch.float16})
|
144 |
+
|
145 |
model.tokenizer.padding_side = "right"
|
146 |
|
147 |
query = "中国的首都是哪里?"
|