File size: 1,936 Bytes
132a784 3b31e7f 132a784 3b31e7f 132a784 3b31e7f 132a784 3b31e7f 132a784 27ff03a cdbcd9a e756c52 27ff03a e756c52 7213ed9 132a784 e756c52 7213ed9 132a784 e756c52 132a784 e756c52 7213ed9 132a784 e756c52 7213ed9 132a784 e756c52 7213ed9 132a784 e756c52 7213ed9 132a784 e756c52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
library_name: transformers
license: apache-2.0
language:
- mn
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [Sainbayar B. (Б. Сайнбаяр) https://www.instagram.com/only_sainaa/]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [Mongolian Cyrillic to Traditional Mongolian Script conversion (Монгол кириллээс монгол бичиг рүү хөрвүүлэгч загвар)]
- **Language(s) (NLP):** [Mongolian /Монгол/]
- **License:** [More Information Needed]
- **Finetuned from model [google-t5-small]:** [More Information Needed]
```python
#Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("onlysainaa/cyrillic_to_script-t5-model")
model = AutoModelForSeq2SeqLM.from_pretrained("onlysainaa/cyrillic_to_script-t5-model")
#Check if CUDA (GPU) is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#Move the model to the same device (GPU or CPU)
model.to(device)
#Prepare text input
input_text = "сайн уу" #Mongolian greeting
#Tokenize the input text
inputs = tokenizer(input_text, return_tensors="pt")
#Move the input tensors to the same device as the model
inputs = {k: v.to(device) for k, v in inputs.items() if k in ['input_ids', 'attention_mask']}
#Generate translation
outputs = model.generate(**inputs)
#Decode the output to human-readable text
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
#Print the translated text
print(f"Translated Text: {translated_text}")
``` |