File size: 1,673 Bytes
132a784
 
3b31e7f
 
 
132a784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b31e7f
132a784
 
3b31e7f
 
132a784
3b31e7f
132a784
7213ed9
 
132a784
7213ed9
 
132a784
7213ed9
 
132a784
7213ed9
 
132a784
7213ed9
 
132a784
7213ed9
 
132a784
7213ed9
 
132a784
7213ed9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
library_name: transformers
license: apache-2.0
language:
- mn
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** [Sainbayar B. (Б. Сайнбаяр) https://www.instagram.com/only_sainaa/]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [Mongolian Cyrillic to Traditional Mongolian Script conversion (Монгол кириллээс монгол бичиг рүү хөрвүүлэгч загвар)]
- **Language(s) (NLP):** [Mongolian /Монгол/]
- **License:** [More Information Needed]
- **Finetuned from model [google-t5-small]:** [More Information Needed]

# Check if CUDA (GPU) is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Move the model to the same device (GPU or CPU)
model.to(device)

# Prepare text input
input_text = "сайн уу"  # Mongolian greeting

# Tokenize the input text
inputs = tokenizer(input_text, return_tensors="pt")

# Move the input tensors to the same device as the model
inputs = {k: v.to(device) for k, v in inputs.items() if k in ['input_ids', 'attention_mask']}

# Generate translation
outputs = model.generate(**inputs)

# Decode the output to human-readable text
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

# Print the translated text
print(f"Translated Text: {translated_text}")