--- base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: attraction-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7546728971962616 --- # attraction-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5790 - Accuracy: 0.7547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 69 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5533 | 0.62 | 150 | 0.5783 | 0.6916 | | 0.5608 | 1.24 | 300 | 0.5504 | 0.7243 | | 0.5382 | 1.87 | 450 | 0.5403 | 0.75 | | 0.4353 | 2.49 | 600 | 0.5244 | 0.7383 | | 0.3963 | 3.11 | 750 | 0.6338 | 0.7220 | | 0.3963 | 3.73 | 900 | 0.5162 | 0.7383 | | 0.3183 | 4.36 | 1050 | 0.5115 | 0.7710 | | 0.3715 | 4.98 | 1200 | 0.5172 | 0.7640 | | 0.2492 | 5.6 | 1350 | 0.5787 | 0.7477 | | 0.2739 | 6.22 | 1500 | 0.5790 | 0.7547 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0