onekq commited on
Commit
9013c80
·
verified ·
1 Parent(s): f10dea5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: onekq-ai/OneSQL-v0.1-Qwen-7B
3
+ tags:
4
+ - text-generation-inference
5
+ - transformers
6
+ - qwen2
7
+ - awq
8
+ license: apache-2.0
9
+ language:
10
+ - en
11
+ ---
12
+
13
+ # Introduction
14
+
15
+ This model is the AWQ version of [OneSQL-v0.1-Qwen-7B](https://huggingface.co/onekq-ai/OneSQL-v0.1-Qwen-7B).
16
+
17
+ # Performances
18
+
19
+ The self-evaluation EX score of the original model is **56.19** (compared to **63.33** by the 32B model on the [BIRD leaderboard](https://bird-bench.github.io/).
20
+ The self-evaluation score of this AWQ model is **43.54%**.
21
+
22
+ # Quick start
23
+
24
+ To use this model, craft your prompt to start with your database schema in the form of **CREATE TABLE**, followed by your natural language query preceded by **--**.
25
+ Make sure your prompt ends with **SELECT** in order for the model to finish the query for you. There is no need to set other parameters like temperature or max token limit.
26
+
27
+ ```python
28
+ from vllm import LLM, SamplingParams
29
+
30
+ llm = LLM(model="onekq-ai/OneSQL-v0.1-Qwen-7B-AWQ")
31
+ sampling_params = SamplingParams(temperature=0.7, max_tokens=200)
32
+
33
+ prompt="CREATE TABLE students (
34
+ id INTEGER PRIMARY KEY,
35
+ name TEXT,
36
+ age INTEGER,
37
+ grade TEXT
38
+ );
39
+
40
+ -- Find the three youngest students
41
+ SELECT "
42
+
43
+ outputs = llm.generate(prompt, sampling_params)
44
+ print(outputs[0].outputs[0].text.strip())
45
+ ```
46
+
47
+ The model response is the finished SQL query without **SELECT**
48
+ ```sql
49
+ * FROM students ORDER BY age ASC LIMIT 3
50
+ ```
51
+
52
+ # Caveats
53
+
54
+ The performance drop from the original model is due to quantization itself, and the lack of beam search support in the vLLM framework. Use at your own discretion.