Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/README-checkpoint.md +1312 -0
- README.md +0 -0
- config.json +1 -1
- model.safetensors +1 -1
- optimizer.pt +1 -1
- rng_state.pth +1 -1
- scheduler.pt +1 -1
- sentence_bert_config.json +1 -1
- tokenizer.json +1 -1
- tokenizer_config.json +8 -1
- trainer_state.json +0 -0
- training_args.bin +1 -1
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,1312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:753920
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: egyllm/pretrained-arabert
|
10 |
+
widget:
|
11 |
+
- source_sentence: '<query>: استجابة الحادث بعد حادث كشف عن أوجه القصور في الشركة'
|
12 |
+
sentences:
|
13 |
+
- '<query>: لقد وقعت حادثة مؤسفة في الشركة'
|
14 |
+
- '<query>: الحادثة التي حدثت في الشركة لم تكن غلطتهم'
|
15 |
+
- '<query>: من غير الواضح بالنسبة لي ان كانوا قد اعط كل المعلومات قبل النطق بالحكم
|
16 |
+
.'
|
17 |
+
- source_sentence: '<query>: ما معنى اختصار rq؟'
|
18 |
+
sentences:
|
19 |
+
- '<passage>: تم نشر غلوبال هوك عسكريًا لدعم العمليات الاستثنائية منذ نوفمبر 2001.
|
20 |
+
في اسم RQ-4، يشير R إلى التعيين الذي تستخدمه وزارة الدفاع للتعقب، وQ يعني نظام
|
21 |
+
طيران بدون طيار. يشير الرقم 4 إلى سلسلة من أنظمة الطيران المأهولة عن بعد.'
|
22 |
+
- '<passage>: برنامج تسجيل الشاشة Camtasia. Camtasia هو برنامج يستخدم لتسجيل الأنشطة
|
23 |
+
على الشاشة، والصوت، والفيديو من الكاميرا، وتقديم العروض التقديمية من PowerPoint.
|
24 |
+
من خلال Camtasia، يمكنك تسجيل وتحرير وإنتاج ومشاركة محتوى الدروس. تشمل ميزات التحرير
|
25 |
+
إشارات التوضيح، والتحولات، والتقريب والتحريك، وتعزيزات الصوت، وغيرها. أنتج ملف
|
26 |
+
الفيديو النهائي الذي يشاهده الطلاب حسب ملاءمةهم، ويمكنك تضمين جدول المحتويات للمساعدة
|
27 |
+
في التنقل.'
|
28 |
+
- '<passage>: تعريف أعلى. RQ. اختصار لـ ''Rage Quit''، وهو ما يحدث عندما يغادر اللاعب/المستخدم
|
29 |
+
اللعبة بسبب الغضب، عادة عندما يقتل. يستخدم في الألعاب متعددة اللاعبين عبر الإنترنت
|
30 |
+
أو LAN، أو الدردشة. على سبيل المثال، WC3(DOTA).'
|
31 |
+
- source_sentence: '<query>: فتاة تلعب في ساحة لعب'
|
32 |
+
sentences:
|
33 |
+
- '<query>: فتاة تلعب في الفناء الأمامي لمنزلهم.'
|
34 |
+
- '<query>: واذا لم يكمل المتعاقد عمله في الوقت المناسب , فانه قد يتعين عليه تعويض
|
35 |
+
الحكومة .'
|
36 |
+
- '<query>: فتاة في ساحة لعب'
|
37 |
+
- source_sentence: '<query>: ما هو كاسكوس'
|
38 |
+
sentences:
|
39 |
+
- '<passage>: تستخدم تفاعل بوليميراز سلسلة متعدد الأطراف الكمي (qPCR) لتحديد عدد
|
40 |
+
نسخ الحمض النووي المحدد في عينة، مقارنةً بمقياس. في PCR في الوقت الحقيقي، يمكن
|
41 |
+
تحديد عدد نسخ الحمض النووي بعد كل دورة من عمليات التضاعيف.'
|
42 |
+
- '<passage>: كاسكوس هو تحالف متوسط قائم على كرات التداول البيضاء والبنية.'
|
43 |
+
- '<passage>: تُظهر الرسوم البيانية أعلاه نشاط حالة الخدمة لكاسكوس.كو.ايد خلال آخر
|
44 |
+
10 فحوصات أوتوماتيكية. يُظهر الشريط الأزرق وقت الاستجابة، وهو أفضل عندما يكون
|
45 |
+
أصغر. إذا لم يُعرض أي شريط لوقت معين، فهذا يعني أن الخدمة كانت غير متاحة وكان
|
46 |
+
الموقع غير متصل بالإنترنت.'
|
47 |
+
- source_sentence: '<query>: يبدو أن الفتاة ذات الوشاح الأخضر والكلب الأبيض يلعبان.'
|
48 |
+
sentences:
|
49 |
+
- '<query>: يبدو أن الفتاة والكلب يلعبان.'
|
50 |
+
- '<query>: الفتاة والكلب لا يتفاعلان'
|
51 |
+
- '<passage>: فيلكيتونوريا هي اضطراب وراثي يزيد من مستويات الفينيلalanine في الدم.'
|
52 |
+
pipeline_tag: sentence-similarity
|
53 |
+
library_name: sentence-transformers
|
54 |
+
metrics:
|
55 |
+
- cosine_accuracy@1
|
56 |
+
- cosine_accuracy@3
|
57 |
+
- cosine_accuracy@5
|
58 |
+
- cosine_accuracy@10
|
59 |
+
- cosine_precision@1
|
60 |
+
- cosine_precision@3
|
61 |
+
- cosine_precision@5
|
62 |
+
- cosine_precision@10
|
63 |
+
- cosine_recall@1
|
64 |
+
- cosine_recall@3
|
65 |
+
- cosine_recall@5
|
66 |
+
- cosine_recall@10
|
67 |
+
- cosine_ndcg@10
|
68 |
+
- cosine_mrr@10
|
69 |
+
- cosine_map@100
|
70 |
+
- pearson_cosine
|
71 |
+
- spearman_cosine
|
72 |
+
- pearson_manhattan
|
73 |
+
- spearman_manhattan
|
74 |
+
- pearson_euclidean
|
75 |
+
- spearman_euclidean
|
76 |
+
- pearson_dot
|
77 |
+
- spearman_dot
|
78 |
+
- pearson_max
|
79 |
+
- spearman_max
|
80 |
+
model-index:
|
81 |
+
- name: SentenceTransformer based on egyllm/pretrained-arabert
|
82 |
+
results:
|
83 |
+
- task:
|
84 |
+
type: information-retrieval
|
85 |
+
name: Information Retrieval
|
86 |
+
dataset:
|
87 |
+
name: Unknown
|
88 |
+
type: unknown
|
89 |
+
metrics:
|
90 |
+
- type: cosine_accuracy@1
|
91 |
+
value: 0.7175
|
92 |
+
name: Cosine Accuracy@1
|
93 |
+
- type: cosine_accuracy@3
|
94 |
+
value: 0.841
|
95 |
+
name: Cosine Accuracy@3
|
96 |
+
- type: cosine_accuracy@5
|
97 |
+
value: 0.878
|
98 |
+
name: Cosine Accuracy@5
|
99 |
+
- type: cosine_accuracy@10
|
100 |
+
value: 0.9155
|
101 |
+
name: Cosine Accuracy@10
|
102 |
+
- type: cosine_precision@1
|
103 |
+
value: 0.7175
|
104 |
+
name: Cosine Precision@1
|
105 |
+
- type: cosine_precision@3
|
106 |
+
value: 0.28033333333333327
|
107 |
+
name: Cosine Precision@3
|
108 |
+
- type: cosine_precision@5
|
109 |
+
value: 0.17560000000000003
|
110 |
+
name: Cosine Precision@5
|
111 |
+
- type: cosine_precision@10
|
112 |
+
value: 0.09155
|
113 |
+
name: Cosine Precision@10
|
114 |
+
- type: cosine_recall@1
|
115 |
+
value: 0.7175
|
116 |
+
name: Cosine Recall@1
|
117 |
+
- type: cosine_recall@3
|
118 |
+
value: 0.841
|
119 |
+
name: Cosine Recall@3
|
120 |
+
- type: cosine_recall@5
|
121 |
+
value: 0.878
|
122 |
+
name: Cosine Recall@5
|
123 |
+
- type: cosine_recall@10
|
124 |
+
value: 0.9155
|
125 |
+
name: Cosine Recall@10
|
126 |
+
- type: cosine_ndcg@10
|
127 |
+
value: 0.8172358824512647
|
128 |
+
name: Cosine Ndcg@10
|
129 |
+
- type: cosine_mrr@10
|
130 |
+
value: 0.7856547619047611
|
131 |
+
name: Cosine Mrr@10
|
132 |
+
- type: cosine_map@100
|
133 |
+
value: 0.7890154491139222
|
134 |
+
name: Cosine Map@100
|
135 |
+
- task:
|
136 |
+
type: semantic-similarity
|
137 |
+
name: Semantic Similarity
|
138 |
+
dataset:
|
139 |
+
name: sts dev
|
140 |
+
type: sts-dev
|
141 |
+
metrics:
|
142 |
+
- type: pearson_cosine
|
143 |
+
value: 0.8015277726105404
|
144 |
+
name: Pearson Cosine
|
145 |
+
- type: spearman_cosine
|
146 |
+
value: 0.8038248041571585
|
147 |
+
name: Spearman Cosine
|
148 |
+
- type: pearson_manhattan
|
149 |
+
value: 0.7895258398435966
|
150 |
+
name: Pearson Manhattan
|
151 |
+
- type: spearman_manhattan
|
152 |
+
value: 0.8012166855619245
|
153 |
+
name: Spearman Manhattan
|
154 |
+
- type: pearson_euclidean
|
155 |
+
value: 0.7893816883662468
|
156 |
+
name: Pearson Euclidean
|
157 |
+
- type: spearman_euclidean
|
158 |
+
value: 0.8029392819509334
|
159 |
+
name: Spearman Euclidean
|
160 |
+
- type: pearson_dot
|
161 |
+
value: 0.7952010752539163
|
162 |
+
name: Pearson Dot
|
163 |
+
- type: spearman_dot
|
164 |
+
value: 0.7982104142453529
|
165 |
+
name: Spearman Dot
|
166 |
+
- type: pearson_max
|
167 |
+
value: 0.8015277726105404
|
168 |
+
name: Pearson Max
|
169 |
+
- type: spearman_max
|
170 |
+
value: 0.8038248041571585
|
171 |
+
name: Spearman Max
|
172 |
+
---
|
173 |
+
|
174 |
+
# SentenceTransformer based on egyllm/pretrained-arabert
|
175 |
+
|
176 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [egyllm/pretrained-arabert](https://huggingface.co/egyllm/pretrained-arabert). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
177 |
+
|
178 |
+
## Model Details
|
179 |
+
|
180 |
+
### Model Description
|
181 |
+
- **Model Type:** Sentence Transformer
|
182 |
+
- **Base model:** [egyllm/pretrained-arabert](https://huggingface.co/egyllm/pretrained-arabert) <!-- at revision dae389d2f3006f50f1b6ec8ec4caf67804b19822 -->
|
183 |
+
- **Maximum Sequence Length:** 256 tokens
|
184 |
+
- **Output Dimensionality:** 768 tokens
|
185 |
+
- **Similarity Function:** Cosine Similarity
|
186 |
+
<!-- - **Training Dataset:** Unknown -->
|
187 |
+
<!-- - **Language:** Unknown -->
|
188 |
+
<!-- - **License:** Unknown -->
|
189 |
+
|
190 |
+
### Model Sources
|
191 |
+
|
192 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
193 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
194 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
195 |
+
|
196 |
+
### Full Model Architecture
|
197 |
+
|
198 |
+
```
|
199 |
+
SentenceTransformer(
|
200 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
201 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
202 |
+
)
|
203 |
+
```
|
204 |
+
|
205 |
+
## Usage
|
206 |
+
|
207 |
+
### Direct Usage (Sentence Transformers)
|
208 |
+
|
209 |
+
First install the Sentence Transformers library:
|
210 |
+
|
211 |
+
```bash
|
212 |
+
pip install -U sentence-transformers
|
213 |
+
```
|
214 |
+
|
215 |
+
Then you can load this model and run inference.
|
216 |
+
```python
|
217 |
+
from sentence_transformers import SentenceTransformer
|
218 |
+
|
219 |
+
# Download from the 🤗 Hub
|
220 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
221 |
+
# Run inference
|
222 |
+
sentences = [
|
223 |
+
'<query>: يبدو أن الفتاة ذات الوشاح الأخضر والكلب الأبيض يلعبان.',
|
224 |
+
'<query>: يبدو أن الفتاة والكلب يلعبان.',
|
225 |
+
'<query>: الفتاة والكلب لا يتفاعلان',
|
226 |
+
]
|
227 |
+
embeddings = model.encode(sentences)
|
228 |
+
print(embeddings.shape)
|
229 |
+
# [3, 768]
|
230 |
+
|
231 |
+
# Get the similarity scores for the embeddings
|
232 |
+
similarities = model.similarity(embeddings, embeddings)
|
233 |
+
print(similarities.shape)
|
234 |
+
# [3, 3]
|
235 |
+
```
|
236 |
+
|
237 |
+
<!--
|
238 |
+
### Direct Usage (Transformers)
|
239 |
+
|
240 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
241 |
+
|
242 |
+
</details>
|
243 |
+
-->
|
244 |
+
|
245 |
+
<!--
|
246 |
+
### Downstream Usage (Sentence Transformers)
|
247 |
+
|
248 |
+
You can finetune this model on your own dataset.
|
249 |
+
|
250 |
+
<details><summary>Click to expand</summary>
|
251 |
+
|
252 |
+
</details>
|
253 |
+
-->
|
254 |
+
|
255 |
+
<!--
|
256 |
+
### Out-of-Scope Use
|
257 |
+
|
258 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
259 |
+
-->
|
260 |
+
|
261 |
+
## Evaluation
|
262 |
+
|
263 |
+
### Metrics
|
264 |
+
|
265 |
+
#### Information Retrieval
|
266 |
+
|
267 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
268 |
+
|
269 |
+
| Metric | Value |
|
270 |
+
|:--------------------|:----------|
|
271 |
+
| cosine_accuracy@1 | 0.7175 |
|
272 |
+
| cosine_accuracy@3 | 0.841 |
|
273 |
+
| cosine_accuracy@5 | 0.878 |
|
274 |
+
| cosine_accuracy@10 | 0.9155 |
|
275 |
+
| cosine_precision@1 | 0.7175 |
|
276 |
+
| cosine_precision@3 | 0.2803 |
|
277 |
+
| cosine_precision@5 | 0.1756 |
|
278 |
+
| cosine_precision@10 | 0.0916 |
|
279 |
+
| cosine_recall@1 | 0.7175 |
|
280 |
+
| cosine_recall@3 | 0.841 |
|
281 |
+
| cosine_recall@5 | 0.878 |
|
282 |
+
| cosine_recall@10 | 0.9155 |
|
283 |
+
| cosine_ndcg@10 | 0.8172 |
|
284 |
+
| cosine_mrr@10 | 0.7857 |
|
285 |
+
| **cosine_map@100** | **0.789** |
|
286 |
+
|
287 |
+
#### Semantic Similarity
|
288 |
+
* Dataset: `sts-dev`
|
289 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
290 |
+
|
291 |
+
| Metric | Value |
|
292 |
+
|:--------------------|:-----------|
|
293 |
+
| pearson_cosine | 0.8015 |
|
294 |
+
| **spearman_cosine** | **0.8038** |
|
295 |
+
| pearson_manhattan | 0.7895 |
|
296 |
+
| spearman_manhattan | 0.8012 |
|
297 |
+
| pearson_euclidean | 0.7894 |
|
298 |
+
| spearman_euclidean | 0.8029 |
|
299 |
+
| pearson_dot | 0.7952 |
|
300 |
+
| spearman_dot | 0.7982 |
|
301 |
+
| pearson_max | 0.8015 |
|
302 |
+
| spearman_max | 0.8038 |
|
303 |
+
|
304 |
+
<!--
|
305 |
+
## Bias, Risks and Limitations
|
306 |
+
|
307 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
308 |
+
-->
|
309 |
+
|
310 |
+
<!--
|
311 |
+
### Recommendations
|
312 |
+
|
313 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
314 |
+
-->
|
315 |
+
|
316 |
+
## Training Details
|
317 |
+
|
318 |
+
### Training Hyperparameters
|
319 |
+
#### Non-Default Hyperparameters
|
320 |
+
|
321 |
+
- `eval_strategy`: steps
|
322 |
+
- `per_device_train_batch_size`: 64
|
323 |
+
- `per_device_eval_batch_size`: 64
|
324 |
+
- `learning_rate`: 1e-05
|
325 |
+
- `num_train_epochs`: 1
|
326 |
+
- `lr_scheduler_type`: cosine
|
327 |
+
- `warmup_ratio`: 0.1
|
328 |
+
- `fp16`: True
|
329 |
+
- `batch_sampler`: no_duplicates
|
330 |
+
|
331 |
+
#### All Hyperparameters
|
332 |
+
<details><summary>Click to expand</summary>
|
333 |
+
|
334 |
+
- `overwrite_output_dir`: False
|
335 |
+
- `do_predict`: False
|
336 |
+
- `eval_strategy`: steps
|
337 |
+
- `prediction_loss_only`: True
|
338 |
+
- `per_device_train_batch_size`: 64
|
339 |
+
- `per_device_eval_batch_size`: 64
|
340 |
+
- `per_gpu_train_batch_size`: None
|
341 |
+
- `per_gpu_eval_batch_size`: None
|
342 |
+
- `gradient_accumulation_steps`: 1
|
343 |
+
- `eval_accumulation_steps`: None
|
344 |
+
- `torch_empty_cache_steps`: None
|
345 |
+
- `learning_rate`: 1e-05
|
346 |
+
- `weight_decay`: 0.0
|
347 |
+
- `adam_beta1`: 0.9
|
348 |
+
- `adam_beta2`: 0.999
|
349 |
+
- `adam_epsilon`: 1e-08
|
350 |
+
- `max_grad_norm`: 1.0
|
351 |
+
- `num_train_epochs`: 1
|
352 |
+
- `max_steps`: -1
|
353 |
+
- `lr_scheduler_type`: cosine
|
354 |
+
- `lr_scheduler_kwargs`: {}
|
355 |
+
- `warmup_ratio`: 0.1
|
356 |
+
- `warmup_steps`: 0
|
357 |
+
- `log_level`: passive
|
358 |
+
- `log_level_replica`: warning
|
359 |
+
- `log_on_each_node`: True
|
360 |
+
- `logging_nan_inf_filter`: True
|
361 |
+
- `save_safetensors`: True
|
362 |
+
- `save_on_each_node`: False
|
363 |
+
- `save_only_model`: False
|
364 |
+
- `restore_callback_states_from_checkpoint`: False
|
365 |
+
- `no_cuda`: False
|
366 |
+
- `use_cpu`: False
|
367 |
+
- `use_mps_device`: False
|
368 |
+
- `seed`: 42
|
369 |
+
- `data_seed`: None
|
370 |
+
- `jit_mode_eval`: False
|
371 |
+
- `use_ipex`: False
|
372 |
+
- `bf16`: False
|
373 |
+
- `fp16`: True
|
374 |
+
- `fp16_opt_level`: O1
|
375 |
+
- `half_precision_backend`: auto
|
376 |
+
- `bf16_full_eval`: False
|
377 |
+
- `fp16_full_eval`: False
|
378 |
+
- `tf32`: None
|
379 |
+
- `local_rank`: 0
|
380 |
+
- `ddp_backend`: None
|
381 |
+
- `tpu_num_cores`: None
|
382 |
+
- `tpu_metrics_debug`: False
|
383 |
+
- `debug`: []
|
384 |
+
- `dataloader_drop_last`: True
|
385 |
+
- `dataloader_num_workers`: 0
|
386 |
+
- `dataloader_prefetch_factor`: None
|
387 |
+
- `past_index`: -1
|
388 |
+
- `disable_tqdm`: False
|
389 |
+
- `remove_unused_columns`: True
|
390 |
+
- `label_names`: None
|
391 |
+
- `load_best_model_at_end`: False
|
392 |
+
- `ignore_data_skip`: False
|
393 |
+
- `fsdp`: []
|
394 |
+
- `fsdp_min_num_params`: 0
|
395 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
396 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
397 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
398 |
+
- `deepspeed`: None
|
399 |
+
- `label_smoothing_factor`: 0.0
|
400 |
+
- `optim`: adamw_torch
|
401 |
+
- `optim_args`: None
|
402 |
+
- `adafactor`: False
|
403 |
+
- `group_by_length`: False
|
404 |
+
- `length_column_name`: length
|
405 |
+
- `ddp_find_unused_parameters`: None
|
406 |
+
- `ddp_bucket_cap_mb`: None
|
407 |
+
- `ddp_broadcast_buffers`: False
|
408 |
+
- `dataloader_pin_memory`: True
|
409 |
+
- `dataloader_persistent_workers`: False
|
410 |
+
- `skip_memory_metrics`: True
|
411 |
+
- `use_legacy_prediction_loop`: False
|
412 |
+
- `push_to_hub`: False
|
413 |
+
- `resume_from_checkpoint`: None
|
414 |
+
- `hub_model_id`: None
|
415 |
+
- `hub_strategy`: every_save
|
416 |
+
- `hub_private_repo`: False
|
417 |
+
- `hub_always_push`: False
|
418 |
+
- `gradient_checkpointing`: False
|
419 |
+
- `gradient_checkpointing_kwargs`: None
|
420 |
+
- `include_inputs_for_metrics`: False
|
421 |
+
- `eval_do_concat_batches`: True
|
422 |
+
- `fp16_backend`: auto
|
423 |
+
- `push_to_hub_model_id`: None
|
424 |
+
- `push_to_hub_organization`: None
|
425 |
+
- `mp_parameters`:
|
426 |
+
- `auto_find_batch_size`: False
|
427 |
+
- `full_determinism`: False
|
428 |
+
- `torchdynamo`: None
|
429 |
+
- `ray_scope`: last
|
430 |
+
- `ddp_timeout`: 1800
|
431 |
+
- `torch_compile`: False
|
432 |
+
- `torch_compile_backend`: None
|
433 |
+
- `torch_compile_mode`: None
|
434 |
+
- `dispatch_batches`: None
|
435 |
+
- `split_batches`: None
|
436 |
+
- `include_tokens_per_second`: False
|
437 |
+
- `include_num_input_tokens_seen`: False
|
438 |
+
- `neftune_noise_alpha`: None
|
439 |
+
- `optim_target_modules`: None
|
440 |
+
- `batch_eval_metrics`: False
|
441 |
+
- `eval_on_start`: False
|
442 |
+
- `use_liger_kernel`: False
|
443 |
+
- `eval_use_gather_object`: False
|
444 |
+
- `batch_sampler`: no_duplicates
|
445 |
+
- `multi_dataset_batch_sampler`: proportional
|
446 |
+
|
447 |
+
</details>
|
448 |
+
|
449 |
+
### Training Logs
|
450 |
+
<details><summary>Click to expand</summary>
|
451 |
+
|
452 |
+
| Epoch | Step | Training Loss | Validation Loss | cosine_map@100 | sts-dev_spearman_cosine |
|
453 |
+
|:------:|:----:|:-------------:|:---------------:|:--------------:|:-----------------------:|
|
454 |
+
| 0 | 0 | - | - | 0.6380 | 0.6561 |
|
455 |
+
| 0.0008 | 10 | 3.8114 | - | - | - |
|
456 |
+
| 0.0017 | 20 | 3.8901 | - | - | - |
|
457 |
+
| 0.0025 | 30 | 3.598 | - | - | - |
|
458 |
+
| 0.0034 | 40 | 3.8369 | - | - | - |
|
459 |
+
| 0.0042 | 50 | 3.4766 | - | - | - |
|
460 |
+
| 0.0051 | 60 | 3.5983 | - | - | - |
|
461 |
+
| 0.0059 | 70 | 3.3285 | - | - | - |
|
462 |
+
| 0.0068 | 80 | 3.1135 | - | - | - |
|
463 |
+
| 0.0076 | 90 | 2.9757 | - | - | - |
|
464 |
+
| 0.0085 | 100 | 3.3373 | - | - | - |
|
465 |
+
| 0.0093 | 110 | 3.1236 | - | - | - |
|
466 |
+
| 0.0102 | 120 | 2.7132 | - | - | - |
|
467 |
+
| 0.0110 | 130 | 2.8783 | - | - | - |
|
468 |
+
| 0.0119 | 140 | 2.3779 | - | - | - |
|
469 |
+
| 0.0127 | 150 | 2.6556 | - | - | - |
|
470 |
+
| 0.0136 | 160 | 2.2028 | - | - | - |
|
471 |
+
| 0.0144 | 170 | 2.2236 | - | - | - |
|
472 |
+
| 0.0153 | 180 | 2.7309 | - | - | - |
|
473 |
+
| 0.0161 | 190 | 2.4107 | - | - | - |
|
474 |
+
| 0.0170 | 200 | 2.3434 | - | - | - |
|
475 |
+
| 0.0178 | 210 | 1.9811 | - | - | - |
|
476 |
+
| 0.0187 | 220 | 2.6514 | - | - | - |
|
477 |
+
| 0.0195 | 230 | 2.6114 | - | - | - |
|
478 |
+
| 0.0204 | 240 | 2.5214 | - | - | - |
|
479 |
+
| 0.0212 | 250 | 2.01 | - | - | - |
|
480 |
+
| 0.0221 | 260 | 1.7568 | - | - | - |
|
481 |
+
| 0.0229 | 270 | 2.356 | - | - | - |
|
482 |
+
| 0.0238 | 280 | 2.5519 | - | - | - |
|
483 |
+
| 0.0246 | 290 | 2.0232 | - | - | - |
|
484 |
+
| 0.0255 | 300 | 1.6215 | - | - | - |
|
485 |
+
| 0.0263 | 310 | 2.6331 | - | - | - |
|
486 |
+
| 0.0272 | 320 | 2.0053 | - | - | - |
|
487 |
+
| 0.0280 | 330 | 2.3054 | - | - | - |
|
488 |
+
| 0.0289 | 340 | 1.9774 | - | - | - |
|
489 |
+
| 0.0297 | 350 | 1.8434 | - | - | - |
|
490 |
+
| 0.0306 | 360 | 1.3065 | - | - | - |
|
491 |
+
| 0.0314 | 370 | 2.5697 | - | - | - |
|
492 |
+
| 0.0323 | 380 | 2.3131 | - | - | - |
|
493 |
+
| 0.0331 | 390 | 2.0535 | - | - | - |
|
494 |
+
| 0.0340 | 400 | 1.5674 | - | - | - |
|
495 |
+
| 0.0348 | 410 | 2.45 | - | - | - |
|
496 |
+
| 0.0357 | 420 | 1.9994 | - | - | - |
|
497 |
+
| 0.0365 | 430 | 2.6629 | - | - | - |
|
498 |
+
| 0.0374 | 440 | 2.0677 | - | - | - |
|
499 |
+
| 0.0382 | 450 | 1.7282 | - | - | - |
|
500 |
+
| 0.0391 | 460 | 2.1117 | - | - | - |
|
501 |
+
| 0.0399 | 470 | 2.374 | - | - | - |
|
502 |
+
| 0.0408 | 480 | 1.7799 | - | - | - |
|
503 |
+
| 0.0416 | 490 | 1.6734 | - | - | - |
|
504 |
+
| 0.0425 | 500 | 1.4893 | - | - | - |
|
505 |
+
| 0.0433 | 510 | 2.031 | - | - | - |
|
506 |
+
| 0.0442 | 520 | 2.4175 | - | - | - |
|
507 |
+
| 0.0450 | 530 | 2.2505 | - | - | - |
|
508 |
+
| 0.0459 | 540 | 2.3695 | - | - | - |
|
509 |
+
| 0.0467 | 550 | 2.1952 | - | - | - |
|
510 |
+
| 0.0476 | 560 | 2.582 | - | - | - |
|
511 |
+
| 0.0484 | 570 | 1.7935 | - | - | - |
|
512 |
+
| 0.0493 | 580 | 2.156 | - | - | - |
|
513 |
+
| 0.0501 | 590 | 1.5579 | - | - | - |
|
514 |
+
| 0.0510 | 600 | 2.572 | - | - | - |
|
515 |
+
| 0.0518 | 610 | 1.8751 | - | - | - |
|
516 |
+
| 0.0527 | 620 | 2.1146 | - | - | - |
|
517 |
+
| 0.0535 | 630 | 1.739 | - | - | - |
|
518 |
+
| 0.0544 | 640 | 1.7652 | - | - | - |
|
519 |
+
| 0.0552 | 650 | 2.3194 | - | - | - |
|
520 |
+
| 0.0561 | 660 | 1.8637 | - | - | - |
|
521 |
+
| 0.0569 | 670 | 1.9794 | - | - | - |
|
522 |
+
| 0.0578 | 680 | 1.6374 | - | - | - |
|
523 |
+
| 0.0586 | 690 | 1.4355 | - | - | - |
|
524 |
+
| 0.0595 | 700 | 1.3763 | - | - | - |
|
525 |
+
| 0.0603 | 710 | 2.2797 | - | - | - |
|
526 |
+
| 0.0612 | 720 | 1.6895 | - | - | - |
|
527 |
+
| 0.0620 | 730 | 1.6998 | - | - | - |
|
528 |
+
| 0.0629 | 740 | 2.0926 | - | - | - |
|
529 |
+
| 0.0637 | 750 | 2.2495 | - | - | - |
|
530 |
+
| 0.0646 | 760 | 1.8361 | - | - | - |
|
531 |
+
| 0.0654 | 770 | 2.0814 | - | - | - |
|
532 |
+
| 0.0663 | 780 | 1.9751 | - | - | - |
|
533 |
+
| 0.0671 | 790 | 1.5877 | - | - | - |
|
534 |
+
| 0.0680 | 800 | 2.9411 | - | - | - |
|
535 |
+
| 0.0688 | 810 | 2.466 | - | - | - |
|
536 |
+
| 0.0697 | 820 | 1.8303 | - | - | - |
|
537 |
+
| 0.0705 | 830 | 1.3468 | - | - | - |
|
538 |
+
| 0.0714 | 840 | 1.5485 | - | - | - |
|
539 |
+
| 0.0722 | 850 | 2.0856 | - | - | - |
|
540 |
+
| 0.0731 | 860 | 1.9067 | - | - | - |
|
541 |
+
| 0.0739 | 870 | 1.5406 | - | - | - |
|
542 |
+
| 0.0748 | 880 | 2.0842 | - | - | - |
|
543 |
+
| 0.0756 | 890 | 1.3399 | - | - | - |
|
544 |
+
| 0.0765 | 900 | 1.8138 | - | - | - |
|
545 |
+
| 0.0773 | 910 | 1.8355 | - | - | - |
|
546 |
+
| 0.0782 | 920 | 2.2083 | - | - | - |
|
547 |
+
| 0.0790 | 930 | 1.849 | - | - | - |
|
548 |
+
| 0.0799 | 940 | 1.9105 | - | - | - |
|
549 |
+
| 0.0807 | 950 | 1.5099 | - | - | - |
|
550 |
+
| 0.0816 | 960 | 1.2589 | - | - | - |
|
551 |
+
| 0.0824 | 970 | 1.5917 | - | - | - |
|
552 |
+
| 0.0833 | 980 | 1.5236 | - | - | - |
|
553 |
+
| 0.0841 | 990 | 1.9194 | - | - | - |
|
554 |
+
| 0.0850 | 1000 | 1.6147 | 1.7406 | 0.7580 | 0.8109 |
|
555 |
+
| 0.0858 | 1010 | 1.8092 | - | - | - |
|
556 |
+
| 0.0867 | 1020 | 2.2912 | - | - | - |
|
557 |
+
| 0.0875 | 1030 | 1.8473 | - | - | - |
|
558 |
+
| 0.0884 | 1040 | 1.3879 | - | - | - |
|
559 |
+
| 0.0892 | 1050 | 2.5645 | - | - | - |
|
560 |
+
| 0.0901 | 1060 | 1.9847 | - | - | - |
|
561 |
+
| 0.0909 | 1070 | 1.7767 | - | - | - |
|
562 |
+
| 0.0918 | 1080 | 1.8132 | - | - | - |
|
563 |
+
| 0.0926 | 1090 | 2.356 | - | - | - |
|
564 |
+
| 0.0935 | 1100 | 1.8806 | - | - | - |
|
565 |
+
| 0.0943 | 1110 | 1.7226 | - | - | - |
|
566 |
+
| 0.0952 | 1120 | 1.6482 | - | - | - |
|
567 |
+
| 0.0960 | 1130 | 2.5 | - | - | - |
|
568 |
+
| 0.0969 | 1140 | 1.5931 | - | - | - |
|
569 |
+
| 0.0977 | 1150 | 1.3899 | - | - | - |
|
570 |
+
| 0.0986 | 1160 | 1.5451 | - | - | - |
|
571 |
+
| 0.0994 | 1170 | 1.59 | - | - | - |
|
572 |
+
| 0.1003 | 1180 | 1.8115 | - | - | - |
|
573 |
+
| 0.1011 | 1190 | 2.062 | - | - | - |
|
574 |
+
| 0.1020 | 1200 | 1.9508 | - | - | - |
|
575 |
+
| 0.1028 | 1210 | 2.4069 | - | - | - |
|
576 |
+
| 0.1037 | 1220 | 2.0273 | - | - | - |
|
577 |
+
| 0.1045 | 1230 | 1.6278 | - | - | - |
|
578 |
+
| 0.1054 | 1240 | 2.5481 | - | - | - |
|
579 |
+
| 0.1062 | 1250 | 1.9195 | - | - | - |
|
580 |
+
| 0.1071 | 1260 | 1.3667 | - | - | - |
|
581 |
+
| 0.1079 | 1270 | 2.4832 | - | - | - |
|
582 |
+
| 0.1088 | 1280 | 2.0343 | - | - | - |
|
583 |
+
| 0.1096 | 1290 | 2.0113 | - | - | - |
|
584 |
+
| 0.1105 | 1300 | 1.5492 | - | - | - |
|
585 |
+
| 0.1113 | 1310 | 1.6053 | - | - | - |
|
586 |
+
| 0.1122 | 1320 | 1.7595 | - | - | - |
|
587 |
+
| 0.1130 | 1330 | 1.356 | - | - | - |
|
588 |
+
| 0.1139 | 1340 | 1.5716 | - | - | - |
|
589 |
+
| 0.1147 | 1350 | 2.1764 | - | - | - |
|
590 |
+
| 0.1156 | 1360 | 1.9217 | - | - | - |
|
591 |
+
| 0.1164 | 1370 | 2.1936 | - | - | - |
|
592 |
+
| 0.1173 | 1380 | 1.3914 | - | - | - |
|
593 |
+
| 0.1181 | 1390 | 1.9944 | - | - | - |
|
594 |
+
| 0.1190 | 1400 | 2.1162 | - | - | - |
|
595 |
+
| 0.1198 | 1410 | 1.7333 | - | - | - |
|
596 |
+
| 0.1207 | 1420 | 2.1856 | - | - | - |
|
597 |
+
| 0.1215 | 1430 | 2.1026 | - | - | - |
|
598 |
+
| 0.1224 | 1440 | 1.2478 | - | - | - |
|
599 |
+
| 0.1232 | 1450 | 2.1637 | - | - | - |
|
600 |
+
| 0.1241 | 1460 | 1.8734 | - | - | - |
|
601 |
+
| 0.1249 | 1470 | 1.8867 | - | - | - |
|
602 |
+
| 0.1258 | 1480 | 2.2377 | - | - | - |
|
603 |
+
| 0.1266 | 1490 | 1.6174 | - | - | - |
|
604 |
+
| 0.1275 | 1500 | 1.356 | - | - | - |
|
605 |
+
| 0.1283 | 1510 | 2.0684 | - | - | - |
|
606 |
+
| 0.1292 | 1520 | 1.4745 | - | - | - |
|
607 |
+
| 0.1300 | 1530 | 2.0965 | - | - | - |
|
608 |
+
| 0.1309 | 1540 | 1.8437 | - | - | - |
|
609 |
+
| 0.1317 | 1550 | 1.4531 | - | - | - |
|
610 |
+
| 0.1326 | 1560 | 2.4221 | - | - | - |
|
611 |
+
| 0.1334 | 1570 | 1.5201 | - | - | - |
|
612 |
+
| 0.1343 | 1580 | 1.5904 | - | - | - |
|
613 |
+
| 0.1351 | 1590 | 1.5357 | - | - | - |
|
614 |
+
| 0.1360 | 1600 | 2.2998 | - | - | - |
|
615 |
+
| 0.1368 | 1610 | 1.2875 | - | - | - |
|
616 |
+
| 0.1377 | 1620 | 1.089 | - | - | - |
|
617 |
+
| 0.1385 | 1630 | 2.0749 | - | - | - |
|
618 |
+
| 0.1394 | 1640 | 2.2554 | - | - | - |
|
619 |
+
| 0.1402 | 1650 | 1.969 | - | - | - |
|
620 |
+
| 0.1411 | 1660 | 2.6012 | - | - | - |
|
621 |
+
| 0.1419 | 1670 | 2.4911 | - | - | - |
|
622 |
+
| 0.1428 | 1680 | 2.5227 | - | - | - |
|
623 |
+
| 0.1436 | 1690 | 1.4801 | - | - | - |
|
624 |
+
| 0.1445 | 1700 | 1.8368 | - | - | - |
|
625 |
+
| 0.1453 | 1710 | 1.3036 | - | - | - |
|
626 |
+
| 0.1462 | 1720 | 1.0037 | - | - | - |
|
627 |
+
| 0.1470 | 1730 | 1.9339 | - | - | - |
|
628 |
+
| 0.1479 | 1740 | 1.3418 | - | - | - |
|
629 |
+
| 0.1487 | 1750 | 1.6051 | - | - | - |
|
630 |
+
| 0.1496 | 1760 | 1.519 | - | - | - |
|
631 |
+
| 0.1504 | 1770 | 1.7575 | - | - | - |
|
632 |
+
| 0.1513 | 1780 | 2.4666 | - | - | - |
|
633 |
+
| 0.1521 | 1790 | 1.6071 | - | - | - |
|
634 |
+
| 0.1530 | 1800 | 1.5381 | - | - | - |
|
635 |
+
| 0.1538 | 1810 | 2.0542 | - | - | - |
|
636 |
+
| 0.1547 | 1820 | 1.489 | - | - | - |
|
637 |
+
| 0.1555 | 1830 | 1.6377 | - | - | - |
|
638 |
+
| 0.1564 | 1840 | 1.8472 | - | - | - |
|
639 |
+
| 0.1572 | 1850 | 1.1818 | - | - | - |
|
640 |
+
| 0.1581 | 1860 | 1.3088 | - | - | - |
|
641 |
+
| 0.1589 | 1870 | 1.7981 | - | - | - |
|
642 |
+
| 0.1598 | 1880 | 1.6091 | - | - | - |
|
643 |
+
| 0.1606 | 1890 | 1.9716 | - | - | - |
|
644 |
+
| 0.1615 | 1900 | 1.9483 | - | - | - |
|
645 |
+
| 0.1623 | 1910 | 2.0124 | - | - | - |
|
646 |
+
| 0.1632 | 1920 | 1.6491 | - | - | - |
|
647 |
+
| 0.1640 | 1930 | 1.7327 | - | - | - |
|
648 |
+
| 0.1649 | 1940 | 2.1865 | - | - | - |
|
649 |
+
| 0.1657 | 1950 | 2.169 | - | - | - |
|
650 |
+
| 0.1666 | 1960 | 1.1178 | - | - | - |
|
651 |
+
| 0.1674 | 1970 | 1.8374 | - | - | - |
|
652 |
+
| 0.1683 | 1980 | 1.493 | - | - | - |
|
653 |
+
| 0.1691 | 1990 | 1.4554 | - | - | - |
|
654 |
+
| 0.1700 | 2000 | 1.5359 | 1.6272 | 0.7663 | 0.8068 |
|
655 |
+
| 0.1708 | 2010 | 1.5926 | - | - | - |
|
656 |
+
| 0.1717 | 2020 | 1.5631 | - | - | - |
|
657 |
+
| 0.1725 | 2030 | 2.054 | - | - | - |
|
658 |
+
| 0.1734 | 2040 | 1.7155 | - | - | - |
|
659 |
+
| 0.1742 | 2050 | 2.2145 | - | - | - |
|
660 |
+
| 0.1751 | 2060 | 1.9712 | - | - | - |
|
661 |
+
| 0.1759 | 2070 | 1.2845 | - | - | - |
|
662 |
+
| 0.1768 | 2080 | 1.5927 | - | - | - |
|
663 |
+
| 0.1776 | 2090 | 2.0479 | - | - | - |
|
664 |
+
| 0.1785 | 2100 | 1.6388 | - | - | - |
|
665 |
+
| 0.1793 | 2110 | 1.4514 | - | - | - |
|
666 |
+
| 0.1801 | 2120 | 1.5075 | - | - | - |
|
667 |
+
| 0.1810 | 2130 | 1.3573 | - | - | - |
|
668 |
+
| 0.1818 | 2140 | 1.6252 | - | - | - |
|
669 |
+
| 0.1827 | 2150 | 1.73 | - | - | - |
|
670 |
+
| 0.1835 | 2160 | 1.6867 | - | - | - |
|
671 |
+
| 0.1844 | 2170 | 1.4409 | - | - | - |
|
672 |
+
| 0.1852 | 2180 | 1.0126 | - | - | - |
|
673 |
+
| 0.1861 | 2190 | 1.5874 | - | - | - |
|
674 |
+
| 0.1869 | 2200 | 1.5113 | - | - | - |
|
675 |
+
| 0.1878 | 2210 | 2.129 | - | - | - |
|
676 |
+
| 0.1886 | 2220 | 1.2366 | - | - | - |
|
677 |
+
| 0.1895 | 2230 | 2.0757 | - | - | - |
|
678 |
+
| 0.1903 | 2240 | 1.8596 | - | - | - |
|
679 |
+
| 0.1912 | 2250 | 2.1074 | - | - | - |
|
680 |
+
| 0.1920 | 2260 | 1.5711 | - | - | - |
|
681 |
+
| 0.1929 | 2270 | 1.3869 | - | - | - |
|
682 |
+
| 0.1937 | 2280 | 1.7303 | - | - | - |
|
683 |
+
| 0.1946 | 2290 | 1.8375 | - | - | - |
|
684 |
+
| 0.1954 | 2300 | 1.6658 | - | - | - |
|
685 |
+
| 0.1963 | 2310 | 2.4472 | - | - | - |
|
686 |
+
| 0.1971 | 2320 | 1.1964 | - | - | - |
|
687 |
+
| 0.1980 | 2330 | 2.1802 | - | - | - |
|
688 |
+
| 0.1988 | 2340 | 2.2913 | - | - | - |
|
689 |
+
| 0.1997 | 2350 | 1.7305 | - | - | - |
|
690 |
+
| 0.2005 | 2360 | 1.2718 | - | - | - |
|
691 |
+
| 0.2014 | 2370 | 2.1567 | - | - | - |
|
692 |
+
| 0.2022 | 2380 | 1.4862 | - | - | - |
|
693 |
+
| 0.2031 | 2390 | 1.8498 | - | - | - |
|
694 |
+
| 0.2039 | 2400 | 2.0407 | - | - | - |
|
695 |
+
| 0.2048 | 2410 | 1.9914 | - | - | - |
|
696 |
+
| 0.2056 | 2420 | 1.7447 | - | - | - |
|
697 |
+
| 0.2065 | 2430 | 1.944 | - | - | - |
|
698 |
+
| 0.2073 | 2440 | 1.7682 | - | - | - |
|
699 |
+
| 0.2082 | 2450 | 2.0332 | - | - | - |
|
700 |
+
| 0.2090 | 2460 | 2.4602 | - | - | - |
|
701 |
+
| 0.2099 | 2470 | 1.6737 | - | - | - |
|
702 |
+
| 0.2107 | 2480 | 1.2002 | - | - | - |
|
703 |
+
| 0.2116 | 2490 | 2.0536 | - | - | - |
|
704 |
+
| 0.2124 | 2500 | 1.2564 | - | - | - |
|
705 |
+
| 0.2133 | 2510 | 1.7968 | - | - | - |
|
706 |
+
| 0.2141 | 2520 | 1.7934 | - | - | - |
|
707 |
+
| 0.2150 | 2530 | 1.3855 | - | - | - |
|
708 |
+
| 0.2158 | 2540 | 1.5086 | - | - | - |
|
709 |
+
| 0.2167 | 2550 | 2.3278 | - | - | - |
|
710 |
+
| 0.2175 | 2560 | 1.62 | - | - | - |
|
711 |
+
| 0.2184 | 2570 | 2.0118 | - | - | - |
|
712 |
+
| 0.2192 | 2580 | 1.7665 | - | - | - |
|
713 |
+
| 0.2201 | 2590 | 1.4106 | - | - | - |
|
714 |
+
| 0.2209 | 2600 | 2.0529 | - | - | - |
|
715 |
+
| 0.2218 | 2610 | 1.5266 | - | - | - |
|
716 |
+
| 0.2226 | 2620 | 2.2004 | - | - | - |
|
717 |
+
| 0.2235 | 2630 | 1.2109 | - | - | - |
|
718 |
+
| 0.2243 | 2640 | 1.4509 | - | - | - |
|
719 |
+
| 0.2252 | 2650 | 1.494 | - | - | - |
|
720 |
+
| 0.2260 | 2660 | 1.5459 | - | - | - |
|
721 |
+
| 0.2269 | 2670 | 2.0089 | - | - | - |
|
722 |
+
| 0.2277 | 2680 | 1.9762 | - | - | - |
|
723 |
+
| 0.2286 | 2690 | 1.3596 | - | - | - |
|
724 |
+
| 0.2294 | 2700 | 1.5094 | - | - | - |
|
725 |
+
| 0.2303 | 2710 | 1.7427 | - | - | - |
|
726 |
+
| 0.2311 | 2720 | 1.354 | - | - | - |
|
727 |
+
| 0.2320 | 2730 | 1.9882 | - | - | - |
|
728 |
+
| 0.2328 | 2740 | 1.3848 | - | - | - |
|
729 |
+
| 0.2337 | 2750 | 1.6313 | - | - | - |
|
730 |
+
| 0.2345 | 2760 | 1.7722 | - | - | - |
|
731 |
+
| 0.2354 | 2770 | 1.2339 | - | - | - |
|
732 |
+
| 0.2362 | 2780 | 1.3144 | - | - | - |
|
733 |
+
| 0.2371 | 2790 | 1.7124 | - | - | - |
|
734 |
+
| 0.2379 | 2800 | 1.8489 | - | - | - |
|
735 |
+
| 0.2388 | 2810 | 1.4535 | - | - | - |
|
736 |
+
| 0.2396 | 2820 | 1.6224 | - | - | - |
|
737 |
+
| 0.2405 | 2830 | 1.6815 | - | - | - |
|
738 |
+
| 0.2413 | 2840 | 1.2336 | - | - | - |
|
739 |
+
| 0.2422 | 2850 | 1.4843 | - | - | - |
|
740 |
+
| 0.2430 | 2860 | 1.295 | - | - | - |
|
741 |
+
| 0.2439 | 2870 | 1.6095 | - | - | - |
|
742 |
+
| 0.2447 | 2880 | 1.7894 | - | - | - |
|
743 |
+
| 0.2456 | 2890 | 1.6503 | - | - | - |
|
744 |
+
| 0.2464 | 2900 | 1.6089 | - | - | - |
|
745 |
+
| 0.2473 | 2910 | 1.8407 | - | - | - |
|
746 |
+
| 0.2481 | 2920 | 1.5631 | - | - | - |
|
747 |
+
| 0.2490 | 2930 | 1.4495 | - | - | - |
|
748 |
+
| 0.2498 | 2940 | 2.0262 | - | - | - |
|
749 |
+
| 0.2507 | 2950 | 1.7444 | - | - | - |
|
750 |
+
| 0.2515 | 2960 | 1.1065 | - | - | - |
|
751 |
+
| 0.2524 | 2970 | 2.1085 | - | - | - |
|
752 |
+
| 0.2532 | 2980 | 1.8828 | - | - | - |
|
753 |
+
| 0.2541 | 2990 | 1.9617 | - | - | - |
|
754 |
+
| 0.2549 | 3000 | 2.1222 | 1.5225 | 0.7716 | 0.7985 |
|
755 |
+
| 0.2558 | 3010 | 1.8215 | - | - | - |
|
756 |
+
| 0.2566 | 3020 | 2.3271 | - | - | - |
|
757 |
+
| 0.2575 | 3030 | 1.3244 | - | - | - |
|
758 |
+
| 0.2583 | 3040 | 1.5012 | - | - | - |
|
759 |
+
| 0.2592 | 3050 | 1.7094 | - | - | - |
|
760 |
+
| 0.2600 | 3060 | 1.7635 | - | - | - |
|
761 |
+
| 0.2609 | 3070 | 1.4024 | - | - | - |
|
762 |
+
| 0.2617 | 3080 | 1.8977 | - | - | - |
|
763 |
+
| 0.2626 | 3090 | 1.4965 | - | - | - |
|
764 |
+
| 0.2634 | 3100 | 1.986 | - | - | - |
|
765 |
+
| 0.2643 | 3110 | 1.6921 | - | - | - |
|
766 |
+
| 0.2651 | 3120 | 1.1191 | - | - | - |
|
767 |
+
| 0.2660 | 3130 | 1.5588 | - | - | - |
|
768 |
+
| 0.2668 | 3140 | 2.2996 | - | - | - |
|
769 |
+
| 0.2677 | 3150 | 1.3422 | - | - | - |
|
770 |
+
| 0.2685 | 3160 | 1.9579 | - | - | - |
|
771 |
+
| 0.2694 | 3170 | 1.0521 | - | - | - |
|
772 |
+
| 0.2702 | 3180 | 1.8859 | - | - | - |
|
773 |
+
| 0.2711 | 3190 | 1.6077 | - | - | - |
|
774 |
+
| 0.2719 | 3200 | 1.0576 | - | - | - |
|
775 |
+
| 0.2728 | 3210 | 1.527 | - | - | - |
|
776 |
+
| 0.2736 | 3220 | 1.2154 | - | - | - |
|
777 |
+
| 0.2745 | 3230 | 1.6487 | - | - | - |
|
778 |
+
| 0.2753 | 3240 | 1.918 | - | - | - |
|
779 |
+
| 0.2762 | 3250 | 1.8735 | - | - | - |
|
780 |
+
| 0.2770 | 3260 | 2.508 | - | - | - |
|
781 |
+
| 0.2779 | 3270 | 1.5813 | - | - | - |
|
782 |
+
| 0.2787 | 3280 | 1.3501 | - | - | - |
|
783 |
+
| 0.2796 | 3290 | 1.364 | - | - | - |
|
784 |
+
| 0.2804 | 3300 | 1.5669 | - | - | - |
|
785 |
+
| 0.2813 | 3310 | 1.2687 | - | - | - |
|
786 |
+
| 0.2821 | 3320 | 1.9495 | - | - | - |
|
787 |
+
| 0.2830 | 3330 | 1.1315 | - | - | - |
|
788 |
+
| 0.2838 | 3340 | 0.9636 | - | - | - |
|
789 |
+
| 0.2847 | 3350 | 1.3071 | - | - | - |
|
790 |
+
| 0.2855 | 3360 | 1.3237 | - | - | - |
|
791 |
+
| 0.2864 | 3370 | 2.1571 | - | - | - |
|
792 |
+
| 0.2872 | 3380 | 1.5394 | - | - | - |
|
793 |
+
| 0.2881 | 3390 | 1.493 | - | - | - |
|
794 |
+
| 0.2889 | 3400 | 1.8023 | - | - | - |
|
795 |
+
| 0.2898 | 3410 | 1.9951 | - | - | - |
|
796 |
+
| 0.2906 | 3420 | 1.4618 | - | - | - |
|
797 |
+
| 0.2915 | 3430 | 1.5207 | - | - | - |
|
798 |
+
| 0.2923 | 3440 | 1.8013 | - | - | - |
|
799 |
+
| 0.2932 | 3450 | 1.4841 | - | - | - |
|
800 |
+
| 0.2940 | 3460 | 2.1567 | - | - | - |
|
801 |
+
| 0.2949 | 3470 | 1.7638 | - | - | - |
|
802 |
+
| 0.2957 | 3480 | 1.4507 | - | - | - |
|
803 |
+
| 0.2966 | 3490 | 2.1364 | - | - | - |
|
804 |
+
| 0.2974 | 3500 | 1.3655 | - | - | - |
|
805 |
+
| 0.2983 | 3510 | 1.147 | - | - | - |
|
806 |
+
| 0.2991 | 3520 | 1.8986 | - | - | - |
|
807 |
+
| 0.3000 | 3530 | 1.6014 | - | - | - |
|
808 |
+
| 0.3008 | 3540 | 1.2619 | - | - | - |
|
809 |
+
| 0.3017 | 3550 | 1.3716 | - | - | - |
|
810 |
+
| 0.3025 | 3560 | 1.5904 | - | - | - |
|
811 |
+
| 0.3034 | 3570 | 1.726 | - | - | - |
|
812 |
+
| 0.3042 | 3580 | 1.6235 | - | - | - |
|
813 |
+
| 0.3051 | 3590 | 1.7598 | - | - | - |
|
814 |
+
| 0.3059 | 3600 | 1.8795 | - | - | - |
|
815 |
+
| 0.3068 | 3610 | 1.6107 | - | - | - |
|
816 |
+
| 0.3076 | 3620 | 1.3525 | - | - | - |
|
817 |
+
| 0.3085 | 3630 | 1.8275 | - | - | - |
|
818 |
+
| 0.3093 | 3640 | 1.333 | - | - | - |
|
819 |
+
| 0.3102 | 3650 | 1.6917 | - | - | - |
|
820 |
+
| 0.3110 | 3660 | 1.6108 | - | - | - |
|
821 |
+
| 0.3119 | 3670 | 1.6899 | - | - | - |
|
822 |
+
| 0.3127 | 3680 | 1.2133 | - | - | - |
|
823 |
+
| 0.3136 | 3690 | 1.4407 | - | - | - |
|
824 |
+
| 0.3144 | 3700 | 1.8746 | - | - | - |
|
825 |
+
| 0.3153 | 3710 | 1.6211 | - | - | - |
|
826 |
+
| 0.3161 | 3720 | 1.5504 | - | - | - |
|
827 |
+
| 0.3170 | 3730 | 1.8787 | - | - | - |
|
828 |
+
| 0.3178 | 3740 | 2.0654 | - | - | - |
|
829 |
+
| 0.3187 | 3750 | 1.4762 | - | - | - |
|
830 |
+
| 0.3195 | 3760 | 1.7039 | - | - | - |
|
831 |
+
| 0.3204 | 3770 | 1.8382 | - | - | - |
|
832 |
+
| 0.3212 | 3780 | 1.684 | - | - | - |
|
833 |
+
| 0.3221 | 3790 | 1.5044 | - | - | - |
|
834 |
+
| 0.3229 | 3800 | 1.9366 | - | - | - |
|
835 |
+
| 0.3238 | 3810 | 1.3692 | - | - | - |
|
836 |
+
| 0.3246 | 3820 | 1.9425 | - | - | - |
|
837 |
+
| 0.3255 | 3830 | 1.9457 | - | - | - |
|
838 |
+
| 0.3263 | 3840 | 2.0349 | - | - | - |
|
839 |
+
| 0.3272 | 3850 | 2.2629 | - | - | - |
|
840 |
+
| 0.3280 | 3860 | 1.782 | - | - | - |
|
841 |
+
| 0.3289 | 3870 | 1.1131 | - | - | - |
|
842 |
+
| 0.3297 | 3880 | 1.6522 | - | - | - |
|
843 |
+
| 0.3306 | 3890 | 1.4468 | - | - | - |
|
844 |
+
| 0.3314 | 3900 | 1.2263 | - | - | - |
|
845 |
+
| 0.3323 | 3910 | 1.4744 | - | - | - |
|
846 |
+
| 0.3331 | 3920 | 1.346 | - | - | - |
|
847 |
+
| 0.3340 | 3930 | 1.6235 | - | - | - |
|
848 |
+
| 0.3348 | 3940 | 1.5373 | - | - | - |
|
849 |
+
| 0.3357 | 3950 | 1.9912 | - | - | - |
|
850 |
+
| 0.3365 | 3960 | 1.5235 | - | - | - |
|
851 |
+
| 0.3374 | 3970 | 1.2973 | - | - | - |
|
852 |
+
| 0.3382 | 3980 | 1.8943 | - | - | - |
|
853 |
+
| 0.3391 | 3990 | 1.796 | - | - | - |
|
854 |
+
| 0.3399 | 4000 | 1.4485 | 1.4988 | 0.7767 | 0.8003 |
|
855 |
+
| 0.3408 | 4010 | 1.4139 | - | - | - |
|
856 |
+
| 0.3416 | 4020 | 1.5104 | - | - | - |
|
857 |
+
| 0.3425 | 4030 | 1.4306 | - | - | - |
|
858 |
+
| 0.3433 | 4040 | 2.0212 | - | - | - |
|
859 |
+
| 0.3442 | 4050 | 1.4815 | - | - | - |
|
860 |
+
| 0.3450 | 4060 | 1.0738 | - | - | - |
|
861 |
+
| 0.3459 | 4070 | 0.9565 | - | - | - |
|
862 |
+
| 0.3467 | 4080 | 1.0451 | - | - | - |
|
863 |
+
| 0.3476 | 4090 | 1.5975 | - | - | - |
|
864 |
+
| 0.3484 | 4100 | 1.8642 | - | - | - |
|
865 |
+
| 0.3493 | 4110 | 1.8995 | - | - | - |
|
866 |
+
| 0.3501 | 4120 | 1.8488 | - | - | - |
|
867 |
+
| 0.3510 | 4130 | 1.1606 | - | - | - |
|
868 |
+
| 0.3518 | 4140 | 1.8689 | - | - | - |
|
869 |
+
| 0.3527 | 4150 | 1.2646 | - | - | - |
|
870 |
+
| 0.3535 | 4160 | 0.8987 | - | - | - |
|
871 |
+
| 0.3544 | 4170 | 1.4526 | - | - | - |
|
872 |
+
| 0.3552 | 4180 | 1.8155 | - | - | - |
|
873 |
+
| 0.3561 | 4190 | 1.4764 | - | - | - |
|
874 |
+
| 0.3569 | 4200 | 1.2846 | - | - | - |
|
875 |
+
| 0.3577 | 4210 | 1.7014 | - | - | - |
|
876 |
+
| 0.3586 | 4220 | 1.2782 | - | - | - |
|
877 |
+
| 0.3594 | 4230 | 1.4259 | - | - | - |
|
878 |
+
| 0.3603 | 4240 | 1.6493 | - | - | - |
|
879 |
+
| 0.3611 | 4250 | 2.1898 | - | - | - |
|
880 |
+
| 0.3620 | 4260 | 2.011 | - | - | - |
|
881 |
+
| 0.3628 | 4270 | 1.4618 | - | - | - |
|
882 |
+
| 0.3637 | 4280 | 1.4918 | - | - | - |
|
883 |
+
| 0.3645 | 4290 | 1.203 | - | - | - |
|
884 |
+
| 0.3654 | 4300 | 2.0598 | - | - | - |
|
885 |
+
| 0.3662 | 4310 | 1.2831 | - | - | - |
|
886 |
+
| 0.3671 | 4320 | 1.6989 | - | - | - |
|
887 |
+
| 0.3679 | 4330 | 1.5319 | - | - | - |
|
888 |
+
| 0.3688 | 4340 | 1.7994 | - | - | - |
|
889 |
+
| 0.3696 | 4350 | 1.9254 | - | - | - |
|
890 |
+
| 0.3705 | 4360 | 1.373 | - | - | - |
|
891 |
+
| 0.3713 | 4370 | 1.7809 | - | - | - |
|
892 |
+
| 0.3722 | 4380 | 1.5119 | - | - | - |
|
893 |
+
| 0.3730 | 4390 | 0.9275 | - | - | - |
|
894 |
+
| 0.3739 | 4400 | 1.9906 | - | - | - |
|
895 |
+
| 0.3747 | 4410 | 1.6756 | - | - | - |
|
896 |
+
| 0.3756 | 4420 | 1.8964 | - | - | - |
|
897 |
+
| 0.3764 | 4430 | 1.3878 | - | - | - |
|
898 |
+
| 0.3773 | 4440 | 2.1686 | - | - | - |
|
899 |
+
| 0.3781 | 4450 | 1.7287 | - | - | - |
|
900 |
+
| 0.3790 | 4460 | 1.4491 | - | - | - |
|
901 |
+
| 0.3798 | 4470 | 1.2374 | - | - | - |
|
902 |
+
| 0.3807 | 4480 | 1.7013 | - | - | - |
|
903 |
+
| 0.3815 | 4490 | 1.511 | - | - | - |
|
904 |
+
| 0.3824 | 4500 | 1.7912 | - | - | - |
|
905 |
+
| 0.3832 | 4510 | 1.3491 | - | - | - |
|
906 |
+
| 0.3841 | 4520 | 1.1391 | - | - | - |
|
907 |
+
| 0.3849 | 4530 | 2.2409 | - | - | - |
|
908 |
+
| 0.3858 | 4540 | 1.1876 | - | - | - |
|
909 |
+
| 0.3866 | 4550 | 1.6563 | - | - | - |
|
910 |
+
| 0.3875 | 4560 | 1.4501 | - | - | - |
|
911 |
+
| 0.3883 | 4570 | 1.4546 | - | - | - |
|
912 |
+
| 0.3892 | 4580 | 1.8082 | - | - | - |
|
913 |
+
| 0.3900 | 4590 | 1.6279 | - | - | - |
|
914 |
+
| 0.3909 | 4600 | 1.6263 | - | - | - |
|
915 |
+
| 0.3917 | 4610 | 1.3064 | - | - | - |
|
916 |
+
| 0.3926 | 4620 | 1.3364 | - | - | - |
|
917 |
+
| 0.3934 | 4630 | 1.3731 | - | - | - |
|
918 |
+
| 0.3943 | 4640 | 1.6393 | - | - | - |
|
919 |
+
| 0.3951 | 4650 | 1.5386 | - | - | - |
|
920 |
+
| 0.3960 | 4660 | 1.3492 | - | - | - |
|
921 |
+
| 0.3968 | 4670 | 1.3999 | - | - | - |
|
922 |
+
| 0.3977 | 4680 | 1.6538 | - | - | - |
|
923 |
+
| 0.3985 | 4690 | 1.1034 | - | - | - |
|
924 |
+
| 0.3994 | 4700 | 1.2209 | - | - | - |
|
925 |
+
| 0.4002 | 4710 | 1.2475 | - | - | - |
|
926 |
+
| 0.4011 | 4720 | 1.4437 | - | - | - |
|
927 |
+
| 0.4019 | 4730 | 1.3123 | - | - | - |
|
928 |
+
| 0.4028 | 4740 | 1.3572 | - | - | - |
|
929 |
+
| 0.4036 | 4750 | 1.7064 | - | - | - |
|
930 |
+
| 0.4045 | 4760 | 1.1078 | - | - | - |
|
931 |
+
| 0.4053 | 4770 | 1.5242 | - | - | - |
|
932 |
+
| 0.4062 | 4780 | 1.9819 | - | - | - |
|
933 |
+
| 0.4070 | 4790 | 1.2159 | - | - | - |
|
934 |
+
| 0.4079 | 4800 | 0.9277 | - | - | - |
|
935 |
+
| 0.4087 | 4810 | 1.7686 | - | - | - |
|
936 |
+
| 0.4096 | 4820 | 1.2682 | - | - | - |
|
937 |
+
| 0.4104 | 4830 | 1.4559 | - | - | - |
|
938 |
+
| 0.4113 | 4840 | 1.6704 | - | - | - |
|
939 |
+
| 0.4121 | 4850 | 1.8827 | - | - | - |
|
940 |
+
| 0.4130 | 4860 | 1.8031 | - | - | - |
|
941 |
+
| 0.4138 | 4870 | 1.5041 | - | - | - |
|
942 |
+
| 0.4147 | 4880 | 1.7433 | - | - | - |
|
943 |
+
| 0.4155 | 4890 | 1.1801 | - | - | - |
|
944 |
+
| 0.4164 | 4900 | 1.7493 | - | - | - |
|
945 |
+
| 0.4172 | 4910 | 1.3221 | - | - | - |
|
946 |
+
| 0.4181 | 4920 | 1.5274 | - | - | - |
|
947 |
+
| 0.4189 | 4930 | 1.2865 | - | - | - |
|
948 |
+
| 0.4198 | 4940 | 1.1829 | - | - | - |
|
949 |
+
| 0.4206 | 4950 | 1.6341 | - | - | - |
|
950 |
+
| 0.4215 | 4960 | 1.7116 | - | - | - |
|
951 |
+
| 0.4223 | 4970 | 2.116 | - | - | - |
|
952 |
+
| 0.4232 | 4980 | 1.0212 | - | - | - |
|
953 |
+
| 0.4240 | 4990 | 1.6326 | - | - | - |
|
954 |
+
| 0.4249 | 5000 | 1.5782 | 1.4283 | 0.7817 | 0.8030 |
|
955 |
+
| 0.4257 | 5010 | 1.1953 | - | - | - |
|
956 |
+
| 0.4266 | 5020 | 1.2725 | - | - | - |
|
957 |
+
| 0.4274 | 5030 | 1.1633 | - | - | - |
|
958 |
+
| 0.4283 | 5040 | 1.4567 | - | - | - |
|
959 |
+
| 0.4291 | 5050 | 1.5835 | - | - | - |
|
960 |
+
| 0.4300 | 5060 | 1.7031 | - | - | - |
|
961 |
+
| 0.4308 | 5070 | 1.8205 | - | - | - |
|
962 |
+
| 0.4317 | 5080 | 1.7956 | - | - | - |
|
963 |
+
| 0.4325 | 5090 | 1.4548 | - | - | - |
|
964 |
+
| 0.4334 | 5100 | 1.3128 | - | - | - |
|
965 |
+
| 0.4342 | 5110 | 1.4953 | - | - | - |
|
966 |
+
| 0.4351 | 5120 | 1.2878 | - | - | - |
|
967 |
+
| 0.4359 | 5130 | 1.2808 | - | - | - |
|
968 |
+
| 0.4368 | 5140 | 1.6998 | - | - | - |
|
969 |
+
| 0.4376 | 5150 | 1.5072 | - | - | - |
|
970 |
+
| 0.4385 | 5160 | 2.1685 | - | - | - |
|
971 |
+
| 0.4393 | 5170 | 1.5449 | - | - | - |
|
972 |
+
| 0.4402 | 5180 | 1.5365 | - | - | - |
|
973 |
+
| 0.4410 | 5190 | 2.8665 | - | - | - |
|
974 |
+
| 0.4419 | 5200 | 1.3293 | - | - | - |
|
975 |
+
| 0.4427 | 5210 | 1.9454 | - | - | - |
|
976 |
+
| 0.4436 | 5220 | 2.1613 | - | - | - |
|
977 |
+
| 0.4444 | 5230 | 1.8404 | - | - | - |
|
978 |
+
| 0.4453 | 5240 | 1.7808 | - | - | - |
|
979 |
+
| 0.4461 | 5250 | 1.2141 | - | - | - |
|
980 |
+
| 0.4470 | 5260 | 1.3211 | - | - | - |
|
981 |
+
| 0.4478 | 5270 | 2.0617 | - | - | - |
|
982 |
+
| 0.4487 | 5280 | 2.0629 | - | - | - |
|
983 |
+
| 0.4495 | 5290 | 1.2651 | - | - | - |
|
984 |
+
| 0.4504 | 5300 | 1.9326 | - | - | - |
|
985 |
+
| 0.4512 | 5310 | 1.455 | - | - | - |
|
986 |
+
| 0.4521 | 5320 | 2.0163 | - | - | - |
|
987 |
+
| 0.4529 | 5330 | 1.3844 | - | - | - |
|
988 |
+
| 0.4538 | 5340 | 2.1358 | - | - | - |
|
989 |
+
| 0.4546 | 5350 | 1.6149 | - | - | - |
|
990 |
+
| 0.4555 | 5360 | 1.5739 | - | - | - |
|
991 |
+
| 0.4563 | 5370 | 1.365 | - | - | - |
|
992 |
+
| 0.4572 | 5380 | 1.4386 | - | - | - |
|
993 |
+
| 0.4580 | 5390 | 1.8719 | - | - | - |
|
994 |
+
| 0.4589 | 5400 | 1.357 | - | - | - |
|
995 |
+
| 0.4597 | 5410 | 1.5401 | - | - | - |
|
996 |
+
| 0.4606 | 5420 | 1.6023 | - | - | - |
|
997 |
+
| 0.4614 | 5430 | 1.277 | - | - | - |
|
998 |
+
| 0.4623 | 5440 | 1.5706 | - | - | - |
|
999 |
+
| 0.4631 | 5450 | 1.7458 | - | - | - |
|
1000 |
+
| 0.4640 | 5460 | 1.2394 | - | - | - |
|
1001 |
+
| 0.4648 | 5470 | 1.1898 | - | - | - |
|
1002 |
+
| 0.4657 | 5480 | 1.6555 | - | - | - |
|
1003 |
+
| 0.4665 | 5490 | 2.1313 | - | - | - |
|
1004 |
+
| 0.4674 | 5500 | 1.5389 | - | - | - |
|
1005 |
+
| 0.4682 | 5510 | 1.8014 | - | - | - |
|
1006 |
+
| 0.4691 | 5520 | 0.8131 | - | - | - |
|
1007 |
+
| 0.4699 | 5530 | 1.9825 | - | - | - |
|
1008 |
+
| 0.4708 | 5540 | 1.1446 | - | - | - |
|
1009 |
+
| 0.4716 | 5550 | 1.6029 | - | - | - |
|
1010 |
+
| 0.4725 | 5560 | 0.8073 | - | - | - |
|
1011 |
+
| 0.4733 | 5570 | 1.4648 | - | - | - |
|
1012 |
+
| 0.4742 | 5580 | 1.4102 | - | - | - |
|
1013 |
+
| 0.4750 | 5590 | 1.3797 | - | - | - |
|
1014 |
+
| 0.4759 | 5600 | 1.5279 | - | - | - |
|
1015 |
+
| 0.4767 | 5610 | 1.5366 | - | - | - |
|
1016 |
+
| 0.4776 | 5620 | 1.7663 | - | - | - |
|
1017 |
+
| 0.4784 | 5630 | 1.4334 | - | - | - |
|
1018 |
+
| 0.4793 | 5640 | 1.7049 | - | - | - |
|
1019 |
+
| 0.4801 | 5650 | 1.9447 | - | - | - |
|
1020 |
+
| 0.4810 | 5660 | 1.3648 | - | - | - |
|
1021 |
+
| 0.4818 | 5670 | 1.7867 | - | - | - |
|
1022 |
+
| 0.4827 | 5680 | 1.6188 | - | - | - |
|
1023 |
+
| 0.4835 | 5690 | 1.7816 | - | - | - |
|
1024 |
+
| 0.4844 | 5700 | 1.4414 | - | - | - |
|
1025 |
+
| 0.4852 | 5710 | 1.1949 | - | - | - |
|
1026 |
+
| 0.4861 | 5720 | 1.9432 | - | - | - |
|
1027 |
+
| 0.4869 | 5730 | 1.6184 | - | - | - |
|
1028 |
+
| 0.4878 | 5740 | 1.5613 | - | - | - |
|
1029 |
+
| 0.4886 | 5750 | 1.7348 | - | - | - |
|
1030 |
+
| 0.4895 | 5760 | 1.3744 | - | - | - |
|
1031 |
+
| 0.4903 | 5770 | 1.9828 | - | - | - |
|
1032 |
+
| 0.4912 | 5780 | 1.7423 | - | - | - |
|
1033 |
+
| 0.4920 | 5790 | 1.3677 | - | - | - |
|
1034 |
+
| 0.4929 | 5800 | 1.1892 | - | - | - |
|
1035 |
+
| 0.4937 | 5810 | 1.588 | - | - | - |
|
1036 |
+
| 0.4946 | 5820 | 1.5046 | - | - | - |
|
1037 |
+
| 0.4954 | 5830 | 1.5982 | - | - | - |
|
1038 |
+
| 0.4963 | 5840 | 1.492 | - | - | - |
|
1039 |
+
| 0.4971 | 5850 | 1.7543 | - | - | - |
|
1040 |
+
| 0.4980 | 5860 | 1.9768 | - | - | - |
|
1041 |
+
| 0.4988 | 5870 | 1.5444 | - | - | - |
|
1042 |
+
| 0.4997 | 5880 | 1.3143 | - | - | - |
|
1043 |
+
| 0.5005 | 5890 | 1.0762 | - | - | - |
|
1044 |
+
| 0.5014 | 5900 | 1.9283 | - | - | - |
|
1045 |
+
| 0.5022 | 5910 | 1.9011 | - | - | - |
|
1046 |
+
| 0.5031 | 5920 | 1.6025 | - | - | - |
|
1047 |
+
| 0.5039 | 5930 | 1.5606 | - | - | - |
|
1048 |
+
| 0.5048 | 5940 | 1.2376 | - | - | - |
|
1049 |
+
| 0.5056 | 5950 | 1.322 | - | - | - |
|
1050 |
+
| 0.5065 | 5960 | 1.2843 | - | - | - |
|
1051 |
+
| 0.5073 | 5970 | 1.3481 | - | - | - |
|
1052 |
+
| 0.5082 | 5980 | 1.0269 | - | - | - |
|
1053 |
+
| 0.5090 | 5990 | 1.204 | - | - | - |
|
1054 |
+
| 0.5099 | 6000 | 1.6248 | 1.4044 | 0.7823 | 0.8081 |
|
1055 |
+
| 0.5107 | 6010 | 1.3755 | - | - | - |
|
1056 |
+
| 0.5116 | 6020 | 0.9876 | - | - | - |
|
1057 |
+
| 0.5124 | 6030 | 1.5123 | - | - | - |
|
1058 |
+
| 0.5133 | 6040 | 1.4224 | - | - | - |
|
1059 |
+
| 0.5141 | 6050 | 1.5319 | - | - | - |
|
1060 |
+
| 0.5150 | 6060 | 1.6707 | - | - | - |
|
1061 |
+
| 0.5158 | 6070 | 1.7906 | - | - | - |
|
1062 |
+
| 0.5167 | 6080 | 1.0413 | - | - | - |
|
1063 |
+
| 0.5175 | 6090 | 1.3346 | - | - | - |
|
1064 |
+
| 0.5184 | 6100 | 1.8298 | - | - | - |
|
1065 |
+
| 0.5192 | 6110 | 1.4339 | - | - | - |
|
1066 |
+
| 0.5201 | 6120 | 1.6045 | - | - | - |
|
1067 |
+
| 0.5209 | 6130 | 1.5257 | - | - | - |
|
1068 |
+
| 0.5218 | 6140 | 1.4627 | - | - | - |
|
1069 |
+
| 0.5226 | 6150 | 1.8083 | - | - | - |
|
1070 |
+
| 0.5235 | 6160 | 1.1072 | - | - | - |
|
1071 |
+
| 0.5243 | 6170 | 1.3782 | - | - | - |
|
1072 |
+
| 0.5252 | 6180 | 1.539 | - | - | - |
|
1073 |
+
| 0.5260 | 6190 | 1.3758 | - | - | - |
|
1074 |
+
| 0.5269 | 6200 | 2.0819 | - | - | - |
|
1075 |
+
| 0.5277 | 6210 | 1.2339 | - | - | - |
|
1076 |
+
| 0.5286 | 6220 | 1.346 | - | - | - |
|
1077 |
+
| 0.5294 | 6230 | 1.6628 | - | - | - |
|
1078 |
+
| 0.5303 | 6240 | 2.0857 | - | - | - |
|
1079 |
+
| 0.5311 | 6250 | 1.3907 | - | - | - |
|
1080 |
+
| 0.5320 | 6260 | 1.3082 | - | - | - |
|
1081 |
+
| 0.5328 | 6270 | 1.8005 | - | - | - |
|
1082 |
+
| 0.5337 | 6280 | 2.1571 | - | - | - |
|
1083 |
+
| 0.5345 | 6290 | 1.9294 | - | - | - |
|
1084 |
+
| 0.5354 | 6300 | 2.2004 | - | - | - |
|
1085 |
+
| 0.5362 | 6310 | 1.5136 | - | - | - |
|
1086 |
+
| 0.5370 | 6320 | 1.6803 | - | - | - |
|
1087 |
+
| 0.5379 | 6330 | 1.3923 | - | - | - |
|
1088 |
+
| 0.5387 | 6340 | 2.4211 | - | - | - |
|
1089 |
+
| 0.5396 | 6350 | 1.4678 | - | - | - |
|
1090 |
+
| 0.5404 | 6360 | 1.6661 | - | - | - |
|
1091 |
+
| 0.5413 | 6370 | 0.9979 | - | - | - |
|
1092 |
+
| 0.5421 | 6380 | 1.1718 | - | - | - |
|
1093 |
+
| 0.5430 | 6390 | 1.9122 | - | - | - |
|
1094 |
+
| 0.5438 | 6400 | 1.7934 | - | - | - |
|
1095 |
+
| 0.5447 | 6410 | 1.6539 | - | - | - |
|
1096 |
+
| 0.5455 | 6420 | 1.8081 | - | - | - |
|
1097 |
+
| 0.5464 | 6430 | 1.8629 | - | - | - |
|
1098 |
+
| 0.5472 | 6440 | 1.3883 | - | - | - |
|
1099 |
+
| 0.5481 | 6450 | 1.3248 | - | - | - |
|
1100 |
+
| 0.5489 | 6460 | 1.6304 | - | - | - |
|
1101 |
+
| 0.5498 | 6470 | 0.9951 | - | - | - |
|
1102 |
+
| 0.5506 | 6480 | 0.9729 | - | - | - |
|
1103 |
+
| 0.5515 | 6490 | 2.2003 | - | - | - |
|
1104 |
+
| 0.5523 | 6500 | 0.9242 | - | - | - |
|
1105 |
+
| 0.5532 | 6510 | 1.6794 | - | - | - |
|
1106 |
+
| 0.5540 | 6520 | 1.2956 | - | - | - |
|
1107 |
+
| 0.5549 | 6530 | 1.4456 | - | - | - |
|
1108 |
+
| 0.5557 | 6540 | 1.1975 | - | - | - |
|
1109 |
+
| 0.5566 | 6550 | 2.0751 | - | - | - |
|
1110 |
+
| 0.5574 | 6560 | 1.5858 | - | - | - |
|
1111 |
+
| 0.5583 | 6570 | 1.8451 | - | - | - |
|
1112 |
+
| 0.5591 | 6580 | 0.9895 | - | - | - |
|
1113 |
+
| 0.5600 | 6590 | 1.5388 | - | - | - |
|
1114 |
+
| 0.5608 | 6600 | 1.443 | - | - | - |
|
1115 |
+
| 0.5617 | 6610 | 1.4455 | - | - | - |
|
1116 |
+
| 0.5625 | 6620 | 1.5491 | - | - | - |
|
1117 |
+
| 0.5634 | 6630 | 1.2772 | - | - | - |
|
1118 |
+
| 0.5642 | 6640 | 1.566 | - | - | - |
|
1119 |
+
| 0.5651 | 6650 | 1.1092 | - | - | - |
|
1120 |
+
| 0.5659 | 6660 | 1.4266 | - | - | - |
|
1121 |
+
| 0.5668 | 6670 | 1.9267 | - | - | - |
|
1122 |
+
| 0.5676 | 6680 | 1.4297 | - | - | - |
|
1123 |
+
| 0.5685 | 6690 | 1.4397 | - | - | - |
|
1124 |
+
| 0.5693 | 6700 | 1.4476 | - | - | - |
|
1125 |
+
| 0.5702 | 6710 | 1.6113 | - | - | - |
|
1126 |
+
| 0.5710 | 6720 | 0.8579 | - | - | - |
|
1127 |
+
| 0.5719 | 6730 | 2.1762 | - | - | - |
|
1128 |
+
| 0.5727 | 6740 | 1.7159 | - | - | - |
|
1129 |
+
| 0.5736 | 6750 | 1.247 | - | - | - |
|
1130 |
+
| 0.5744 | 6760 | 1.4467 | - | - | - |
|
1131 |
+
| 0.5753 | 6770 | 1.8219 | - | - | - |
|
1132 |
+
| 0.5761 | 6780 | 1.729 | - | - | - |
|
1133 |
+
| 0.5770 | 6790 | 1.58 | - | - | - |
|
1134 |
+
| 0.5778 | 6800 | 1.5089 | - | - | - |
|
1135 |
+
| 0.5787 | 6810 | 1.2977 | - | - | - |
|
1136 |
+
| 0.5795 | 6820 | 1.6302 | - | - | - |
|
1137 |
+
| 0.5804 | 6830 | 1.7185 | - | - | - |
|
1138 |
+
| 0.5812 | 6840 | 1.1584 | - | - | - |
|
1139 |
+
| 0.5821 | 6850 | 1.6683 | - | - | - |
|
1140 |
+
| 0.5829 | 6860 | 1.1037 | - | - | - |
|
1141 |
+
| 0.5838 | 6870 | 1.7633 | - | - | - |
|
1142 |
+
| 0.5846 | 6880 | 1.4152 | - | - | - |
|
1143 |
+
| 0.5855 | 6890 | 1.8851 | - | - | - |
|
1144 |
+
| 0.5863 | 6900 | 1.6294 | - | - | - |
|
1145 |
+
| 0.5872 | 6910 | 1.2872 | - | - | - |
|
1146 |
+
| 0.5880 | 6920 | 1.3789 | - | - | - |
|
1147 |
+
| 0.5889 | 6930 | 1.6389 | - | - | - |
|
1148 |
+
| 0.5897 | 6940 | 2.172 | - | - | - |
|
1149 |
+
| 0.5906 | 6950 | 1.2677 | - | - | - |
|
1150 |
+
| 0.5914 | 6960 | 1.5623 | - | - | - |
|
1151 |
+
| 0.5923 | 6970 | 1.993 | - | - | - |
|
1152 |
+
| 0.5931 | 6980 | 0.9549 | - | - | - |
|
1153 |
+
| 0.5940 | 6990 | 1.3705 | - | - | - |
|
1154 |
+
| 0.5948 | 7000 | 1.0568 | 1.3680 | 0.7842 | 0.8020 |
|
1155 |
+
| 0.5957 | 7010 | 1.2301 | - | - | - |
|
1156 |
+
| 0.5965 | 7020 | 1.7126 | - | - | - |
|
1157 |
+
| 0.5974 | 7030 | 1.5412 | - | - | - |
|
1158 |
+
| 0.5982 | 7040 | 1.1385 | - | - | - |
|
1159 |
+
| 0.5991 | 7050 | 1.2436 | - | - | - |
|
1160 |
+
| 0.5999 | 7060 | 1.323 | - | - | - |
|
1161 |
+
| 0.6008 | 7070 | 1.4247 | - | - | - |
|
1162 |
+
| 0.6016 | 7080 | 1.6796 | - | - | - |
|
1163 |
+
| 0.6025 | 7090 | 1.4213 | - | - | - |
|
1164 |
+
| 0.6033 | 7100 | 0.9983 | - | - | - |
|
1165 |
+
| 0.6042 | 7110 | 1.5862 | - | - | - |
|
1166 |
+
| 0.6050 | 7120 | 1.118 | - | - | - |
|
1167 |
+
| 0.6059 | 7130 | 1.6444 | - | - | - |
|
1168 |
+
| 0.6067 | 7140 | 1.7763 | - | - | - |
|
1169 |
+
| 0.6076 | 7150 | 1.8345 | - | - | - |
|
1170 |
+
| 0.6084 | 7160 | 1.6835 | - | - | - |
|
1171 |
+
| 0.6093 | 7170 | 1.0519 | - | - | - |
|
1172 |
+
| 0.6101 | 7180 | 1.6993 | - | - | - |
|
1173 |
+
| 0.6110 | 7190 | 1.8109 | - | - | - |
|
1174 |
+
| 0.6118 | 7200 | 1.7157 | - | - | - |
|
1175 |
+
| 0.6127 | 7210 | 1.5706 | - | - | - |
|
1176 |
+
| 0.6135 | 7220 | 1.5365 | - | - | - |
|
1177 |
+
| 0.6144 | 7230 | 1.4711 | - | - | - |
|
1178 |
+
| 0.6152 | 7240 | 1.5818 | - | - | - |
|
1179 |
+
| 0.6161 | 7250 | 1.3997 | - | - | - |
|
1180 |
+
| 0.6169 | 7260 | 1.044 | - | - | - |
|
1181 |
+
| 0.6178 | 7270 | 1.6471 | - | - | - |
|
1182 |
+
| 0.6186 | 7280 | 1.2558 | - | - | - |
|
1183 |
+
| 0.6195 | 7290 | 1.0215 | - | - | - |
|
1184 |
+
| 0.6203 | 7300 | 1.6653 | - | - | - |
|
1185 |
+
| 0.6212 | 7310 | 1.2894 | - | - | - |
|
1186 |
+
| 0.6220 | 7320 | 1.6529 | - | - | - |
|
1187 |
+
| 0.6229 | 7330 | 1.7363 | - | - | - |
|
1188 |
+
| 0.6237 | 7340 | 0.8245 | - | - | - |
|
1189 |
+
| 0.6246 | 7350 | 2.1902 | - | - | - |
|
1190 |
+
| 0.6254 | 7360 | 1.1631 | - | - | - |
|
1191 |
+
| 0.6263 | 7370 | 1.735 | - | - | - |
|
1192 |
+
| 0.6271 | 7380 | 1.4256 | - | - | - |
|
1193 |
+
| 0.6280 | 7390 | 1.6377 | - | - | - |
|
1194 |
+
| 0.6288 | 7400 | 1.5828 | - | - | - |
|
1195 |
+
| 0.6297 | 7410 | 1.4463 | - | - | - |
|
1196 |
+
| 0.6305 | 7420 | 0.9314 | - | - | - |
|
1197 |
+
| 0.6314 | 7430 | 1.1351 | - | - | - |
|
1198 |
+
| 0.6322 | 7440 | 1.3325 | - | - | - |
|
1199 |
+
| 0.6331 | 7450 | 1.8632 | - | - | - |
|
1200 |
+
| 0.6339 | 7460 | 1.014 | - | - | - |
|
1201 |
+
| 0.6348 | 7470 | 1.4796 | - | - | - |
|
1202 |
+
| 0.6356 | 7480 | 1.8911 | - | - | - |
|
1203 |
+
| 0.6365 | 7490 | 1.6274 | - | - | - |
|
1204 |
+
| 0.6373 | 7500 | 1.2259 | - | - | - |
|
1205 |
+
| 0.6382 | 7510 | 1.1066 | - | - | - |
|
1206 |
+
| 0.6390 | 7520 | 1.3845 | - | - | - |
|
1207 |
+
| 0.6399 | 7530 | 1.4874 | - | - | - |
|
1208 |
+
| 0.6407 | 7540 | 1.5912 | - | - | - |
|
1209 |
+
| 0.6416 | 7550 | 1.4071 | - | - | - |
|
1210 |
+
| 0.6424 | 7560 | 1.2559 | - | - | - |
|
1211 |
+
| 0.6433 | 7570 | 1.2858 | - | - | - |
|
1212 |
+
| 0.6441 | 7580 | 1.5097 | - | - | - |
|
1213 |
+
| 0.6450 | 7590 | 1.1406 | - | - | - |
|
1214 |
+
| 0.6458 | 7600 | 1.6047 | - | - | - |
|
1215 |
+
| 0.6467 | 7610 | 1.2911 | - | - | - |
|
1216 |
+
| 0.6475 | 7620 | 1.4758 | - | - | - |
|
1217 |
+
| 0.6484 | 7630 | 1.4608 | - | - | - |
|
1218 |
+
| 0.6492 | 7640 | 1.4307 | - | - | - |
|
1219 |
+
| 0.6501 | 7650 | 1.1705 | - | - | - |
|
1220 |
+
| 0.6509 | 7660 | 1.1394 | - | - | - |
|
1221 |
+
| 0.6518 | 7670 | 1.133 | - | - | - |
|
1222 |
+
| 0.6526 | 7680 | 1.8461 | - | - | - |
|
1223 |
+
| 0.6535 | 7690 | 1.6305 | - | - | - |
|
1224 |
+
| 0.6543 | 7700 | 1.3304 | - | - | - |
|
1225 |
+
| 0.6552 | 7710 | 0.9695 | - | - | - |
|
1226 |
+
| 0.6560 | 7720 | 1.3937 | - | - | - |
|
1227 |
+
| 0.6569 | 7730 | 1.4486 | - | - | - |
|
1228 |
+
| 0.6577 | 7740 | 1.3141 | - | - | - |
|
1229 |
+
| 0.6586 | 7750 | 1.1174 | - | - | - |
|
1230 |
+
| 0.6594 | 7760 | 1.0358 | - | - | - |
|
1231 |
+
| 0.6603 | 7770 | 1.4542 | - | - | - |
|
1232 |
+
| 0.6611 | 7780 | 1.3459 | - | - | - |
|
1233 |
+
| 0.6620 | 7790 | 1.3809 | - | - | - |
|
1234 |
+
| 0.6628 | 7800 | 1.1335 | - | - | - |
|
1235 |
+
| 0.6637 | 7810 | 2.2354 | - | - | - |
|
1236 |
+
| 0.6645 | 7820 | 1.9021 | - | - | - |
|
1237 |
+
| 0.6654 | 7830 | 1.4453 | - | - | - |
|
1238 |
+
| 0.6662 | 7840 | 1.621 | - | - | - |
|
1239 |
+
| 0.6671 | 7850 | 1.3936 | - | - | - |
|
1240 |
+
| 0.6679 | 7860 | 1.5465 | - | - | - |
|
1241 |
+
| 0.6688 | 7870 | 1.4917 | - | - | - |
|
1242 |
+
| 0.6696 | 7880 | 1.9427 | - | - | - |
|
1243 |
+
| 0.6705 | 7890 | 1.2764 | - | - | - |
|
1244 |
+
| 0.6713 | 7900 | 1.8721 | - | - | - |
|
1245 |
+
| 0.6722 | 7910 | 1.6532 | - | - | - |
|
1246 |
+
| 0.6730 | 7920 | 0.9971 | - | - | - |
|
1247 |
+
| 0.6739 | 7930 | 1.4542 | - | - | - |
|
1248 |
+
| 0.6747 | 7940 | 1.5839 | - | - | - |
|
1249 |
+
| 0.6756 | 7950 | 1.6431 | - | - | - |
|
1250 |
+
| 0.6764 | 7960 | 1.8941 | - | - | - |
|
1251 |
+
| 0.6773 | 7970 | 1.0336 | - | - | - |
|
1252 |
+
| 0.6781 | 7980 | 1.7703 | - | - | - |
|
1253 |
+
| 0.6790 | 7990 | 1.1059 | - | - | - |
|
1254 |
+
| 0.6798 | 8000 | 1.7855 | 1.3473 | 0.7890 | 0.8038 |
|
1255 |
+
|
1256 |
+
</details>
|
1257 |
+
|
1258 |
+
### Framework Versions
|
1259 |
+
- Python: 3.10.12
|
1260 |
+
- Sentence Transformers: 3.2.1
|
1261 |
+
- Transformers: 4.45.2
|
1262 |
+
- PyTorch: 2.1.0+cu118
|
1263 |
+
- Accelerate: 1.0.1
|
1264 |
+
- Datasets: 3.0.2
|
1265 |
+
- Tokenizers: 0.20.3
|
1266 |
+
|
1267 |
+
## Citation
|
1268 |
+
|
1269 |
+
### BibTeX
|
1270 |
+
|
1271 |
+
#### Sentence Transformers
|
1272 |
+
```bibtex
|
1273 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1274 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1275 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1276 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1277 |
+
month = "11",
|
1278 |
+
year = "2019",
|
1279 |
+
publisher = "Association for Computational Linguistics",
|
1280 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1281 |
+
}
|
1282 |
+
```
|
1283 |
+
|
1284 |
+
#### MultipleNegativesRankingLoss
|
1285 |
+
```bibtex
|
1286 |
+
@misc{henderson2017efficient,
|
1287 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1288 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1289 |
+
year={2017},
|
1290 |
+
eprint={1705.00652},
|
1291 |
+
archivePrefix={arXiv},
|
1292 |
+
primaryClass={cs.CL}
|
1293 |
+
}
|
1294 |
+
```
|
1295 |
+
|
1296 |
+
<!--
|
1297 |
+
## Glossary
|
1298 |
+
|
1299 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1300 |
+
-->
|
1301 |
+
|
1302 |
+
<!--
|
1303 |
+
## Model Card Authors
|
1304 |
+
|
1305 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1306 |
+
-->
|
1307 |
+
|
1308 |
+
<!--
|
1309 |
+
## Model Card Contact
|
1310 |
+
|
1311 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1312 |
+
-->
|
README.md
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "egyllm/pretrained-arabert",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 540801896
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:794b7d826b6cae21b4a4d8da8e0a16cd873089c4dcbce68dfa7af0eba518a0c1
|
3 |
size 540801896
|
optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1076999098
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91b428447ea85ee1d71429e6dbcf6d0d9f358567b064d36ada401527db9bf8c0
|
3 |
size 1076999098
|
rng_state.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14244
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0834822dcfcc9282f3984bfa30b2e00b4dcc7d8c93bb7d028049215b64b24be6
|
3 |
size 14244
|
scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1064
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc03bc5786c64d375377aaff161c3f8c7af4269b445167421e027c6a81ac4733
|
3 |
size 1064
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"max_seq_length":
|
3 |
"do_lower_case": false
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"max_seq_length": 256,
|
3 |
"do_lower_case": false
|
4 |
}
|
tokenizer.json
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
-
"max_length":
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
+
"max_length": 256,
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
tokenizer_config.json
CHANGED
@@ -87,16 +87,23 @@
|
|
87 |
"do_lower_case": false,
|
88 |
"mask_token": "[MASK]",
|
89 |
"max_len": 512,
|
90 |
-
"
|
|
|
91 |
"never_split": [
|
92 |
"[بريد]",
|
93 |
"[مستخدم]",
|
94 |
"[رابط]"
|
95 |
],
|
|
|
96 |
"pad_token": "[PAD]",
|
|
|
|
|
97 |
"sep_token": "[SEP]",
|
|
|
98 |
"strip_accents": null,
|
99 |
"tokenize_chinese_chars": true,
|
100 |
"tokenizer_class": "BertTokenizer",
|
|
|
|
|
101 |
"unk_token": "[UNK]"
|
102 |
}
|
|
|
87 |
"do_lower_case": false,
|
88 |
"mask_token": "[MASK]",
|
89 |
"max_len": 512,
|
90 |
+
"max_length": 256,
|
91 |
+
"model_max_length": 256,
|
92 |
"never_split": [
|
93 |
"[بريد]",
|
94 |
"[مستخدم]",
|
95 |
"[رابط]"
|
96 |
],
|
97 |
+
"pad_to_multiple_of": null,
|
98 |
"pad_token": "[PAD]",
|
99 |
+
"pad_token_type_id": 0,
|
100 |
+
"padding_side": "right",
|
101 |
"sep_token": "[SEP]",
|
102 |
+
"stride": 0,
|
103 |
"strip_accents": null,
|
104 |
"tokenize_chinese_chars": true,
|
105 |
"tokenizer_class": "BertTokenizer",
|
106 |
+
"truncation_side": "right",
|
107 |
+
"truncation_strategy": "longest_first",
|
108 |
"unk_token": "[UNK]"
|
109 |
}
|
trainer_state.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5496
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:851ff741716a5a33051ecf32df85f972a2076a94531b091bbe6598a979369190
|
3 |
size 5496
|