--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: arabic-dialect-model results: [] --- # arabic-dialect-model This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-msa](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7129 - Accuracy: 0.1778 - F1: 0.1297 - Precision: 0.1777 - Recall: 0.1778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 3.0984 | 1.0 | 16 | 3.0297 | 0.0444 | 0.05 | 0.0593 | 0.0444 | | 2.9882 | 2.0 | 32 | 2.9796 | 0.0889 | 0.0660 | 0.0526 | 0.0889 | | 2.904 | 3.0 | 48 | 2.9029 | 0.1111 | 0.0577 | 0.0399 | 0.1111 | | 2.7871 | 4.0 | 64 | 2.8040 | 0.1778 | 0.1057 | 0.1370 | 0.1778 | | 2.6578 | 5.0 | 80 | 2.7129 | 0.1778 | 0.1297 | 0.1777 | 0.1778 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cpu - Datasets 2.13.0 - Tokenizers 0.13.3