--- library_name: transformers language: - id license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - octava/extracted-id-subbed-video-v2 metrics: - wer model-index: - name: Whisper Small Id - Inspirasi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Extracted id video v2 type: octava/extracted-id-subbed-video-v2 config: id split: test args: 'config: id, split: test' metrics: - name: Wer type: wer value: 28.173403414112286 --- # Whisper Small Id - Inspirasi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Extracted id video v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4480 - Wer: 28.1734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2601 | 0.5615 | 1000 | 0.3923 | 29.8060 | | 0.1176 | 1.1230 | 2000 | 0.3954 | 30.3875 | | 0.0848 | 1.6844 | 3000 | 0.4068 | 29.2758 | | 0.0317 | 2.2459 | 4000 | 0.4088 | 26.8850 | | 0.0261 | 2.8074 | 5000 | 0.4480 | 28.1734 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.2.0a0+81ea7a4 - Datasets 3.3.2 - Tokenizers 0.21.0