File size: 2,212 Bytes
08087cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
language:
- id
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- octava/extracted-id-subbed-video-v2
metrics:
- wer
model-index:
- name: Whisper Small Id - Inspirasi
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Extracted id video v2
      type: octava/extracted-id-subbed-video-v2
      config: id
      split: test
      args: 'config: id, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 28.173403414112286
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Id - Inspirasi

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Extracted id video v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4480
- Wer: 28.1734

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2601        | 0.5615 | 1000 | 0.3923          | 29.8060 |
| 0.1176        | 1.1230 | 2000 | 0.3954          | 30.3875 |
| 0.0848        | 1.6844 | 3000 | 0.4068          | 29.2758 |
| 0.0317        | 2.2459 | 4000 | 0.4088          | 26.8850 |
| 0.0261        | 2.8074 | 5000 | 0.4480          | 28.1734 |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.2.0a0+81ea7a4
- Datasets 3.3.2
- Tokenizers 0.21.0