NeMo
English
nvidia
code
math
igitman commited on
Commit
c7c00b3
·
verified ·
1 Parent(s): 2f20a3f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -10
README.md CHANGED
@@ -76,7 +76,7 @@ a math instruction tuning dataset with 1.8M problem-solution pairs generated usi
76
  </tr>
77
  </table>
78
 
79
- The pipeline we used to produce these models is fully open-sourced under a commercially permissive license.
80
 
81
  - [Code](https://github.com/Kipok/NeMo-Skills)
82
  - [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
@@ -86,30 +86,31 @@ The pipeline we used to produce these models is fully open-sourced under a comme
86
 
87
  Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!
88
 
 
 
89
  We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
90
 
91
- If you want to improve your own models or to learn more about our pipeline, read through the relevant docs below.
92
 
93
- - [Model evaluation](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)
94
- - [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
95
- - [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
96
 
97
- ## Training
 
 
 
98
 
99
- This model is trained with [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
100
  an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
101
  It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
102
  offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
103
 
104
- Please see [NeMo-Skills Github repo](https://github.com/Kipok/NeMo-Skills) for training details.
105
-
106
  ## Contact
107
 
108
  E-Mail Igor Gitman at [email protected]
109
 
110
  ## Citation
111
 
112
- If you find this model useful, please cite the following works
113
 
114
  TODO
115
 
 
76
  </tr>
77
  </table>
78
 
79
+ The pipeline we used to produce these models is fully open-sourced!
80
 
81
  - [Code](https://github.com/Kipok/NeMo-Skills)
82
  - [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
 
86
 
87
  Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!
88
 
89
+ ## Reproducing our results
90
+
91
  We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
92
 
93
+ ## Improving your own models
94
 
95
+ If you want to improve your own models or to learn more about our pipeline, read through the relevant docs below.
 
 
96
 
97
+ - [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
98
+ - [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
99
+ - [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
100
+ - [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)
101
 
102
+ In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
103
  an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
104
  It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
105
  offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
106
 
 
 
107
  ## Contact
108
 
109
  E-Mail Igor Gitman at [email protected]
110
 
111
  ## Citation
112
 
113
+ If you find our work useful, please consider citing us!
114
 
115
  TODO
116