NeMo
English
nvidia
code
math
igitman commited on
Commit
10f805f
·
verified ·
1 Parent(s): f8b28f7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md CHANGED
@@ -1,3 +1,81 @@
1
  ---
2
  license: llama2
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
+ datasets:
4
+ - nvidia/OpenMathInstruct-1
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ tags:
9
+ - nvidia
10
+ - code
11
+ - math
12
  ---
13
+
14
+
15
+ # OpenMath-CodeLlama-7b-Python
16
+
17
+ ## Description:
18
+
19
+ OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks
20
+ executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1),
21
+ a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed
22
+ [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) model.
23
+
24
+
25
+ | Model | Size | GSM8K | MATH |
26
+ |--------------------------------------------------|-------|-----------|----------|
27
+ | GPT-4 [1] | - | 94.4 | 56.2 |
28
+ | GPT-4 + code [2] | - | 92.9 | 69.7 |
29
+ | OpenMath-CodeLlama-7B ([nemo](https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python), [HF](https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf)) | 7B | 75.9 | 43.6 |
30
+ | OpenMath-CodeLlama-7B + self-consistency (k=50) | 7B | 84.8 | 55.6 |
31
+ | OpenMath-Mistral-7B ([nemo](https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1), [HF](https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf)) | 7B | 80.2 | 44.5 |
32
+ | OpenMath-Mistral-7B + self-consistency (k=50) | 7B | 86.9 | 57.2 |
33
+ | OpenMath-CodeLlama-13B ([nemo](https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python), [HF](https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf)) | 13B | 78.8 | 45.5 |
34
+ | OpenMath-CodeLlama-13B + self-consistency (k=50) | 13B | 86.8 | 57.6 |
35
+ | OpenMath-CodeLlama-34B ([nemo](https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python), [HF](https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python-hf)) | 34B | 80.7 | 48.3 |
36
+ | OpenMath-CodeLlama-34B + self-consistency (k=50) | 34B | 88.0 | 60.2 |
37
+ | OpenMath-Llama2-70B ([nemo](https://huggingface.co/nvidia/OpenMath-Llama-2-70b), [HF](https://huggingface.co/nvidia/OpenMath-Llama-2-70b-hf)) | 70B | 84.7 | 46.3 |
38
+ | OpenMath-Llama2-70B + self-consistency (k=50) | 70B | 90.1 | 58.3 |
39
+ | OpenMath-CodeLlama-70B ([nemo](https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python), [HF](https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python-hf)) | 70B | **84.6** | **50.7** |
40
+ | OpenMath-CodeLlama-70B + self-consistency (k=50) | 70B | **90.8** | **60.4** |
41
+
42
+
43
+ The pipeline we used to produce these models is fully open-sourced under a commercially permissive license.
44
+
45
+ - [Code](https://github.com/Kipok/NeMo-Skills)
46
+ - [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
47
+ - [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1)
48
+
49
+ ## How to use the models?
50
+
51
+ Try to [run inference with our models](/docs/inference.md) with just a few commands!
52
+
53
+ We provide [all instructions](/docs/reproducing-results.md) to fully reproduce our results.
54
+
55
+ If you want to improve your own models or to learn more about our pipeline, read through the relevant docs below.
56
+
57
+ - [Model evaluation](/docs/evaluation.md)
58
+ - [Generating synthetic data](/docs/synthetic-data-generation.md)
59
+ - [Finetuning models](/docs/finetuning.md)
60
+
61
+ ## Training
62
+
63
+ This model is trained with [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
64
+ an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
65
+ It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
66
+ offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
67
+
68
+ Please see [NeMo-Skills Github repo](https://github.com/Kipok/NeMo-Skills) for training details.
69
+
70
+ ## Contact
71
+
72
+ E-Mail: [Igor Gitman](mailto:[email protected])
73
+
74
+ ## Citation
75
+
76
+ If you find this model useful, please cite the following works
77
+
78
+ TODO
79
+
80
+ ## License
81
+ The use of this model is governed by the [Llama 2 Community License Agreement](https://ai.meta.com/llama/license/)