Super-squash branch 'main' using huggingface_hub
Browse filesCo-authored-by: tomaarsen <[email protected]>
- .gitattributes +35 -0
- 1_Pooling/config.json +10 -0
- README.md +2186 -0
- config.json +101 -0
- config_sentence_transformers.json +9 -0
- configuration_nvembed.py +90 -0
- instructions.json +80 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +311 -0
- modeling_nvembed.py +441 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 4096,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": false
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,2186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- mteb
|
| 4 |
+
model-index:
|
| 5 |
+
- name: NV-Embed-v2
|
| 6 |
+
results:
|
| 7 |
+
- dataset:
|
| 8 |
+
config: en
|
| 9 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
| 10 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
| 11 |
+
split: test
|
| 12 |
+
type: mteb/amazon_counterfactual
|
| 13 |
+
metrics:
|
| 14 |
+
- type: accuracy
|
| 15 |
+
value: 94.28358208955224
|
| 16 |
+
- type: accuracy_stderr
|
| 17 |
+
value: 0.40076780842082305
|
| 18 |
+
- type: ap
|
| 19 |
+
value: 76.49097318319616
|
| 20 |
+
- type: ap_stderr
|
| 21 |
+
value: 1.2418692675183929
|
| 22 |
+
- type: f1
|
| 23 |
+
value: 91.41982003001168
|
| 24 |
+
- type: f1_stderr
|
| 25 |
+
value: 0.5043921413093579
|
| 26 |
+
- type: main_score
|
| 27 |
+
value: 94.28358208955224
|
| 28 |
+
task:
|
| 29 |
+
type: Classification
|
| 30 |
+
- dataset:
|
| 31 |
+
config: default
|
| 32 |
+
name: MTEB AmazonPolarityClassification
|
| 33 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
| 34 |
+
split: test
|
| 35 |
+
type: mteb/amazon_polarity
|
| 36 |
+
metrics:
|
| 37 |
+
- type: accuracy
|
| 38 |
+
value: 97.74185000000001
|
| 39 |
+
- type: accuracy_stderr
|
| 40 |
+
value: 0.07420471683120942
|
| 41 |
+
- type: ap
|
| 42 |
+
value: 96.4737144875525
|
| 43 |
+
- type: ap_stderr
|
| 44 |
+
value: 0.2977518241541558
|
| 45 |
+
- type: f1
|
| 46 |
+
value: 97.7417581594921
|
| 47 |
+
- type: f1_stderr
|
| 48 |
+
value: 0.07428763617010377
|
| 49 |
+
- type: main_score
|
| 50 |
+
value: 97.74185000000001
|
| 51 |
+
task:
|
| 52 |
+
type: Classification
|
| 53 |
+
- dataset:
|
| 54 |
+
config: en
|
| 55 |
+
name: MTEB AmazonReviewsClassification (en)
|
| 56 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 57 |
+
split: test
|
| 58 |
+
type: mteb/amazon_reviews_multi
|
| 59 |
+
metrics:
|
| 60 |
+
- type: accuracy
|
| 61 |
+
value: 63.96000000000001
|
| 62 |
+
- type: accuracy_stderr
|
| 63 |
+
value: 1.815555011559825
|
| 64 |
+
- type: f1
|
| 65 |
+
value: 62.49361841640459
|
| 66 |
+
- type: f1_stderr
|
| 67 |
+
value: 2.829339314126457
|
| 68 |
+
- type: main_score
|
| 69 |
+
value: 63.96000000000001
|
| 70 |
+
task:
|
| 71 |
+
type: Classification
|
| 72 |
+
- dataset:
|
| 73 |
+
config: default
|
| 74 |
+
name: MTEB ArguAna
|
| 75 |
+
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
|
| 76 |
+
split: test
|
| 77 |
+
type: mteb/arguana
|
| 78 |
+
metrics:
|
| 79 |
+
- type: map_at_1
|
| 80 |
+
value: 46.515
|
| 81 |
+
- type: map_at_10
|
| 82 |
+
value: 62.392
|
| 83 |
+
- type: map_at_100
|
| 84 |
+
value: 62.732
|
| 85 |
+
- type: map_at_1000
|
| 86 |
+
value: 62.733000000000004
|
| 87 |
+
- type: map_at_3
|
| 88 |
+
value: 58.701
|
| 89 |
+
- type: map_at_5
|
| 90 |
+
value: 61.027
|
| 91 |
+
- type: mrr_at_1
|
| 92 |
+
value: 0.0
|
| 93 |
+
- type: mrr_at_10
|
| 94 |
+
value: 0.0
|
| 95 |
+
- type: mrr_at_100
|
| 96 |
+
value: 0.0
|
| 97 |
+
- type: mrr_at_1000
|
| 98 |
+
value: 0.0
|
| 99 |
+
- type: mrr_at_3
|
| 100 |
+
value: 0.0
|
| 101 |
+
- type: mrr_at_5
|
| 102 |
+
value: 0.0
|
| 103 |
+
- type: ndcg_at_1
|
| 104 |
+
value: 46.515
|
| 105 |
+
- type: ndcg_at_10
|
| 106 |
+
value: 70.074
|
| 107 |
+
- type: ndcg_at_100
|
| 108 |
+
value: 71.395
|
| 109 |
+
- type: ndcg_at_1000
|
| 110 |
+
value: 71.405
|
| 111 |
+
- type: ndcg_at_3
|
| 112 |
+
value: 62.643
|
| 113 |
+
- type: ndcg_at_5
|
| 114 |
+
value: 66.803
|
| 115 |
+
- type: precision_at_1
|
| 116 |
+
value: 46.515
|
| 117 |
+
- type: precision_at_10
|
| 118 |
+
value: 9.41
|
| 119 |
+
- type: precision_at_100
|
| 120 |
+
value: 0.996
|
| 121 |
+
- type: precision_at_1000
|
| 122 |
+
value: 0.1
|
| 123 |
+
- type: precision_at_3
|
| 124 |
+
value: 24.68
|
| 125 |
+
- type: precision_at_5
|
| 126 |
+
value: 16.814
|
| 127 |
+
- type: recall_at_1
|
| 128 |
+
value: 46.515
|
| 129 |
+
- type: recall_at_10
|
| 130 |
+
value: 94.097
|
| 131 |
+
- type: recall_at_100
|
| 132 |
+
value: 99.57300000000001
|
| 133 |
+
- type: recall_at_1000
|
| 134 |
+
value: 99.644
|
| 135 |
+
- type: recall_at_3
|
| 136 |
+
value: 74.03999999999999
|
| 137 |
+
- type: recall_at_5
|
| 138 |
+
value: 84.068
|
| 139 |
+
- type: main_score
|
| 140 |
+
value: 70.074
|
| 141 |
+
task:
|
| 142 |
+
type: Retrieval
|
| 143 |
+
- dataset:
|
| 144 |
+
config: default
|
| 145 |
+
name: MTEB ArxivClusteringP2P
|
| 146 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
| 147 |
+
split: test
|
| 148 |
+
type: mteb/arxiv-clustering-p2p
|
| 149 |
+
metrics:
|
| 150 |
+
- type: main_score
|
| 151 |
+
value: 55.79933795955242
|
| 152 |
+
- type: v_measure
|
| 153 |
+
value: 55.79933795955242
|
| 154 |
+
- type: v_measure_std
|
| 155 |
+
value: 14.575108141916148
|
| 156 |
+
task:
|
| 157 |
+
type: Clustering
|
| 158 |
+
- dataset:
|
| 159 |
+
config: default
|
| 160 |
+
name: MTEB ArxivClusteringS2S
|
| 161 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
| 162 |
+
split: test
|
| 163 |
+
type: mteb/arxiv-clustering-s2s
|
| 164 |
+
metrics:
|
| 165 |
+
- type: main_score
|
| 166 |
+
value: 51.262845995850334
|
| 167 |
+
- type: v_measure
|
| 168 |
+
value: 51.262845995850334
|
| 169 |
+
- type: v_measure_std
|
| 170 |
+
value: 14.727824473104173
|
| 171 |
+
task:
|
| 172 |
+
type: Clustering
|
| 173 |
+
- dataset:
|
| 174 |
+
config: default
|
| 175 |
+
name: MTEB AskUbuntuDupQuestions
|
| 176 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
| 177 |
+
split: test
|
| 178 |
+
type: mteb/askubuntudupquestions-reranking
|
| 179 |
+
metrics:
|
| 180 |
+
- type: map
|
| 181 |
+
value: 67.46477327480808
|
| 182 |
+
- type: mrr
|
| 183 |
+
value: 79.50160488941653
|
| 184 |
+
- type: main_score
|
| 185 |
+
value: 67.46477327480808
|
| 186 |
+
task:
|
| 187 |
+
type: Reranking
|
| 188 |
+
- dataset:
|
| 189 |
+
config: default
|
| 190 |
+
name: MTEB BIOSSES
|
| 191 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
| 192 |
+
split: test
|
| 193 |
+
type: mteb/biosses-sts
|
| 194 |
+
metrics:
|
| 195 |
+
- type: cosine_pearson
|
| 196 |
+
value: 89.74311007980987
|
| 197 |
+
- type: cosine_spearman
|
| 198 |
+
value: 87.41644967443246
|
| 199 |
+
- type: manhattan_pearson
|
| 200 |
+
value: 88.57457108347744
|
| 201 |
+
- type: manhattan_spearman
|
| 202 |
+
value: 87.59295972042997
|
| 203 |
+
- type: euclidean_pearson
|
| 204 |
+
value: 88.27108977118459
|
| 205 |
+
- type: euclidean_spearman
|
| 206 |
+
value: 87.41644967443246
|
| 207 |
+
- type: main_score
|
| 208 |
+
value: 87.41644967443246
|
| 209 |
+
task:
|
| 210 |
+
type: STS
|
| 211 |
+
- dataset:
|
| 212 |
+
config: default
|
| 213 |
+
name: MTEB Banking77Classification
|
| 214 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
| 215 |
+
split: test
|
| 216 |
+
type: mteb/banking77
|
| 217 |
+
metrics:
|
| 218 |
+
- type: accuracy
|
| 219 |
+
value: 92.41558441558443
|
| 220 |
+
- type: accuracy_stderr
|
| 221 |
+
value: 0.37701502251934443
|
| 222 |
+
- type: f1
|
| 223 |
+
value: 92.38130170447671
|
| 224 |
+
- type: f1_stderr
|
| 225 |
+
value: 0.39115151225617767
|
| 226 |
+
- type: main_score
|
| 227 |
+
value: 92.41558441558443
|
| 228 |
+
task:
|
| 229 |
+
type: Classification
|
| 230 |
+
- dataset:
|
| 231 |
+
config: default
|
| 232 |
+
name: MTEB BiorxivClusteringP2P
|
| 233 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
| 234 |
+
split: test
|
| 235 |
+
type: mteb/biorxiv-clustering-p2p
|
| 236 |
+
metrics:
|
| 237 |
+
- type: main_score
|
| 238 |
+
value: 54.08649516394218
|
| 239 |
+
- type: v_measure
|
| 240 |
+
value: 54.08649516394218
|
| 241 |
+
- type: v_measure_std
|
| 242 |
+
value: 0.5303233693045373
|
| 243 |
+
task:
|
| 244 |
+
type: Clustering
|
| 245 |
+
- dataset:
|
| 246 |
+
config: default
|
| 247 |
+
name: MTEB BiorxivClusteringS2S
|
| 248 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
| 249 |
+
split: test
|
| 250 |
+
type: mteb/biorxiv-clustering-s2s
|
| 251 |
+
metrics:
|
| 252 |
+
- type: main_score
|
| 253 |
+
value: 49.60352214167779
|
| 254 |
+
- type: v_measure
|
| 255 |
+
value: 49.60352214167779
|
| 256 |
+
- type: v_measure_std
|
| 257 |
+
value: 0.7176198612516721
|
| 258 |
+
task:
|
| 259 |
+
type: Clustering
|
| 260 |
+
- dataset:
|
| 261 |
+
config: default
|
| 262 |
+
name: MTEB CQADupstackRetrieval
|
| 263 |
+
revision: 46989137a86843e03a6195de44b09deda022eec7
|
| 264 |
+
split: test
|
| 265 |
+
type: CQADupstackRetrieval_is_a_combined_dataset
|
| 266 |
+
metrics:
|
| 267 |
+
- type: map_at_1
|
| 268 |
+
value: 31.913249999999998
|
| 269 |
+
- type: map_at_10
|
| 270 |
+
value: 43.87733333333334
|
| 271 |
+
- type: map_at_100
|
| 272 |
+
value: 45.249916666666664
|
| 273 |
+
- type: map_at_1000
|
| 274 |
+
value: 45.350583333333326
|
| 275 |
+
- type: map_at_3
|
| 276 |
+
value: 40.316833333333335
|
| 277 |
+
- type: map_at_5
|
| 278 |
+
value: 42.317083333333336
|
| 279 |
+
- type: mrr_at_1
|
| 280 |
+
value: 0.0
|
| 281 |
+
- type: mrr_at_10
|
| 282 |
+
value: 0.0
|
| 283 |
+
- type: mrr_at_100
|
| 284 |
+
value: 0.0
|
| 285 |
+
- type: mrr_at_1000
|
| 286 |
+
value: 0.0
|
| 287 |
+
- type: mrr_at_3
|
| 288 |
+
value: 0.0
|
| 289 |
+
- type: mrr_at_5
|
| 290 |
+
value: 0.0
|
| 291 |
+
- type: ndcg_at_1
|
| 292 |
+
value: 38.30616666666667
|
| 293 |
+
- type: ndcg_at_10
|
| 294 |
+
value: 50.24175000000001
|
| 295 |
+
- type: ndcg_at_100
|
| 296 |
+
value: 55.345333333333336
|
| 297 |
+
- type: ndcg_at_1000
|
| 298 |
+
value: 56.91225000000001
|
| 299 |
+
- type: ndcg_at_3
|
| 300 |
+
value: 44.67558333333333
|
| 301 |
+
- type: ndcg_at_5
|
| 302 |
+
value: 47.32333333333334
|
| 303 |
+
- type: precision_at_1
|
| 304 |
+
value: 38.30616666666667
|
| 305 |
+
- type: precision_at_10
|
| 306 |
+
value: 9.007416666666666
|
| 307 |
+
- type: precision_at_100
|
| 308 |
+
value: 1.3633333333333333
|
| 309 |
+
- type: precision_at_1000
|
| 310 |
+
value: 0.16691666666666666
|
| 311 |
+
- type: precision_at_3
|
| 312 |
+
value: 20.895666666666667
|
| 313 |
+
- type: precision_at_5
|
| 314 |
+
value: 14.871666666666666
|
| 315 |
+
- type: recall_at_1
|
| 316 |
+
value: 31.913249999999998
|
| 317 |
+
- type: recall_at_10
|
| 318 |
+
value: 64.11891666666666
|
| 319 |
+
- type: recall_at_100
|
| 320 |
+
value: 85.91133333333333
|
| 321 |
+
- type: recall_at_1000
|
| 322 |
+
value: 96.28225
|
| 323 |
+
- type: recall_at_3
|
| 324 |
+
value: 48.54749999999999
|
| 325 |
+
- type: recall_at_5
|
| 326 |
+
value: 55.44283333333334
|
| 327 |
+
- type: main_score
|
| 328 |
+
value: 50.24175000000001
|
| 329 |
+
task:
|
| 330 |
+
type: Retrieval
|
| 331 |
+
- dataset:
|
| 332 |
+
config: default
|
| 333 |
+
name: MTEB ClimateFEVER
|
| 334 |
+
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
|
| 335 |
+
split: test
|
| 336 |
+
type: mteb/climate-fever
|
| 337 |
+
metrics:
|
| 338 |
+
- type: map_at_1
|
| 339 |
+
value: 19.556
|
| 340 |
+
- type: map_at_10
|
| 341 |
+
value: 34.623
|
| 342 |
+
- type: map_at_100
|
| 343 |
+
value: 36.97
|
| 344 |
+
- type: map_at_1000
|
| 345 |
+
value: 37.123
|
| 346 |
+
- type: map_at_3
|
| 347 |
+
value: 28.904999999999998
|
| 348 |
+
- type: map_at_5
|
| 349 |
+
value: 31.955
|
| 350 |
+
- type: mrr_at_1
|
| 351 |
+
value: 0.0
|
| 352 |
+
- type: mrr_at_10
|
| 353 |
+
value: 0.0
|
| 354 |
+
- type: mrr_at_100
|
| 355 |
+
value: 0.0
|
| 356 |
+
- type: mrr_at_1000
|
| 357 |
+
value: 0.0
|
| 358 |
+
- type: mrr_at_3
|
| 359 |
+
value: 0.0
|
| 360 |
+
- type: mrr_at_5
|
| 361 |
+
value: 0.0
|
| 362 |
+
- type: ndcg_at_1
|
| 363 |
+
value: 44.104
|
| 364 |
+
- type: ndcg_at_10
|
| 365 |
+
value: 45.388
|
| 366 |
+
- type: ndcg_at_100
|
| 367 |
+
value: 52.793
|
| 368 |
+
- type: ndcg_at_1000
|
| 369 |
+
value: 55.108999999999995
|
| 370 |
+
- type: ndcg_at_3
|
| 371 |
+
value: 38.604
|
| 372 |
+
- type: ndcg_at_5
|
| 373 |
+
value: 40.806
|
| 374 |
+
- type: precision_at_1
|
| 375 |
+
value: 44.104
|
| 376 |
+
- type: precision_at_10
|
| 377 |
+
value: 14.143
|
| 378 |
+
- type: precision_at_100
|
| 379 |
+
value: 2.2190000000000003
|
| 380 |
+
- type: precision_at_1000
|
| 381 |
+
value: 0.266
|
| 382 |
+
- type: precision_at_3
|
| 383 |
+
value: 29.316
|
| 384 |
+
- type: precision_at_5
|
| 385 |
+
value: 21.98
|
| 386 |
+
- type: recall_at_1
|
| 387 |
+
value: 19.556
|
| 388 |
+
- type: recall_at_10
|
| 389 |
+
value: 52.120999999999995
|
| 390 |
+
- type: recall_at_100
|
| 391 |
+
value: 76.509
|
| 392 |
+
- type: recall_at_1000
|
| 393 |
+
value: 89.029
|
| 394 |
+
- type: recall_at_3
|
| 395 |
+
value: 34.919
|
| 396 |
+
- type: recall_at_5
|
| 397 |
+
value: 42.18
|
| 398 |
+
- type: main_score
|
| 399 |
+
value: 45.388
|
| 400 |
+
task:
|
| 401 |
+
type: Retrieval
|
| 402 |
+
- dataset:
|
| 403 |
+
config: default
|
| 404 |
+
name: MTEB DBPedia
|
| 405 |
+
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
|
| 406 |
+
split: test
|
| 407 |
+
type: mteb/dbpedia
|
| 408 |
+
metrics:
|
| 409 |
+
- type: map_at_1
|
| 410 |
+
value: 10.714
|
| 411 |
+
- type: map_at_10
|
| 412 |
+
value: 25.814999999999998
|
| 413 |
+
- type: map_at_100
|
| 414 |
+
value: 37.845
|
| 415 |
+
- type: map_at_1000
|
| 416 |
+
value: 39.974
|
| 417 |
+
- type: map_at_3
|
| 418 |
+
value: 17.201
|
| 419 |
+
- type: map_at_5
|
| 420 |
+
value: 21.062
|
| 421 |
+
- type: mrr_at_1
|
| 422 |
+
value: 0.0
|
| 423 |
+
- type: mrr_at_10
|
| 424 |
+
value: 0.0
|
| 425 |
+
- type: mrr_at_100
|
| 426 |
+
value: 0.0
|
| 427 |
+
- type: mrr_at_1000
|
| 428 |
+
value: 0.0
|
| 429 |
+
- type: mrr_at_3
|
| 430 |
+
value: 0.0
|
| 431 |
+
- type: mrr_at_5
|
| 432 |
+
value: 0.0
|
| 433 |
+
- type: ndcg_at_1
|
| 434 |
+
value: 66.0
|
| 435 |
+
- type: ndcg_at_10
|
| 436 |
+
value: 53.496
|
| 437 |
+
- type: ndcg_at_100
|
| 438 |
+
value: 58.053
|
| 439 |
+
- type: ndcg_at_1000
|
| 440 |
+
value: 64.886
|
| 441 |
+
- type: ndcg_at_3
|
| 442 |
+
value: 57.656
|
| 443 |
+
- type: ndcg_at_5
|
| 444 |
+
value: 55.900000000000006
|
| 445 |
+
- type: precision_at_1
|
| 446 |
+
value: 77.25
|
| 447 |
+
- type: precision_at_10
|
| 448 |
+
value: 43.65
|
| 449 |
+
- type: precision_at_100
|
| 450 |
+
value: 13.76
|
| 451 |
+
- type: precision_at_1000
|
| 452 |
+
value: 2.5940000000000003
|
| 453 |
+
- type: precision_at_3
|
| 454 |
+
value: 61.0
|
| 455 |
+
- type: precision_at_5
|
| 456 |
+
value: 54.65
|
| 457 |
+
- type: recall_at_1
|
| 458 |
+
value: 10.714
|
| 459 |
+
- type: recall_at_10
|
| 460 |
+
value: 31.173000000000002
|
| 461 |
+
- type: recall_at_100
|
| 462 |
+
value: 63.404
|
| 463 |
+
- type: recall_at_1000
|
| 464 |
+
value: 85.874
|
| 465 |
+
- type: recall_at_3
|
| 466 |
+
value: 18.249000000000002
|
| 467 |
+
- type: recall_at_5
|
| 468 |
+
value: 23.69
|
| 469 |
+
- type: main_score
|
| 470 |
+
value: 53.496
|
| 471 |
+
task:
|
| 472 |
+
type: Retrieval
|
| 473 |
+
- dataset:
|
| 474 |
+
config: default
|
| 475 |
+
name: MTEB EmotionClassification
|
| 476 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
| 477 |
+
split: test
|
| 478 |
+
type: mteb/emotion
|
| 479 |
+
metrics:
|
| 480 |
+
- type: accuracy
|
| 481 |
+
value: 93.38499999999999
|
| 482 |
+
- type: accuracy_stderr
|
| 483 |
+
value: 0.13793114224133846
|
| 484 |
+
- type: f1
|
| 485 |
+
value: 90.12141028353496
|
| 486 |
+
- type: f1_stderr
|
| 487 |
+
value: 0.174640257706043
|
| 488 |
+
- type: main_score
|
| 489 |
+
value: 93.38499999999999
|
| 490 |
+
task:
|
| 491 |
+
type: Classification
|
| 492 |
+
- dataset:
|
| 493 |
+
config: default
|
| 494 |
+
name: MTEB FEVER
|
| 495 |
+
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
|
| 496 |
+
split: test
|
| 497 |
+
type: mteb/fever
|
| 498 |
+
metrics:
|
| 499 |
+
- type: map_at_1
|
| 500 |
+
value: 84.66900000000001
|
| 501 |
+
- type: map_at_10
|
| 502 |
+
value: 91.52799999999999
|
| 503 |
+
- type: map_at_100
|
| 504 |
+
value: 91.721
|
| 505 |
+
- type: map_at_1000
|
| 506 |
+
value: 91.73
|
| 507 |
+
- type: map_at_3
|
| 508 |
+
value: 90.752
|
| 509 |
+
- type: map_at_5
|
| 510 |
+
value: 91.262
|
| 511 |
+
- type: mrr_at_1
|
| 512 |
+
value: 0.0
|
| 513 |
+
- type: mrr_at_10
|
| 514 |
+
value: 0.0
|
| 515 |
+
- type: mrr_at_100
|
| 516 |
+
value: 0.0
|
| 517 |
+
- type: mrr_at_1000
|
| 518 |
+
value: 0.0
|
| 519 |
+
- type: mrr_at_3
|
| 520 |
+
value: 0.0
|
| 521 |
+
- type: mrr_at_5
|
| 522 |
+
value: 0.0
|
| 523 |
+
- type: ndcg_at_1
|
| 524 |
+
value: 91.20899999999999
|
| 525 |
+
- type: ndcg_at_10
|
| 526 |
+
value: 93.74900000000001
|
| 527 |
+
- type: ndcg_at_100
|
| 528 |
+
value: 94.279
|
| 529 |
+
- type: ndcg_at_1000
|
| 530 |
+
value: 94.408
|
| 531 |
+
- type: ndcg_at_3
|
| 532 |
+
value: 92.923
|
| 533 |
+
- type: ndcg_at_5
|
| 534 |
+
value: 93.376
|
| 535 |
+
- type: precision_at_1
|
| 536 |
+
value: 91.20899999999999
|
| 537 |
+
- type: precision_at_10
|
| 538 |
+
value: 11.059
|
| 539 |
+
- type: precision_at_100
|
| 540 |
+
value: 1.1560000000000001
|
| 541 |
+
- type: precision_at_1000
|
| 542 |
+
value: 0.11800000000000001
|
| 543 |
+
- type: precision_at_3
|
| 544 |
+
value: 35.129
|
| 545 |
+
- type: precision_at_5
|
| 546 |
+
value: 21.617
|
| 547 |
+
- type: recall_at_1
|
| 548 |
+
value: 84.66900000000001
|
| 549 |
+
- type: recall_at_10
|
| 550 |
+
value: 97.03399999999999
|
| 551 |
+
- type: recall_at_100
|
| 552 |
+
value: 98.931
|
| 553 |
+
- type: recall_at_1000
|
| 554 |
+
value: 99.65899999999999
|
| 555 |
+
- type: recall_at_3
|
| 556 |
+
value: 94.76299999999999
|
| 557 |
+
- type: recall_at_5
|
| 558 |
+
value: 95.968
|
| 559 |
+
- type: main_score
|
| 560 |
+
value: 93.74900000000001
|
| 561 |
+
task:
|
| 562 |
+
type: Retrieval
|
| 563 |
+
- dataset:
|
| 564 |
+
config: default
|
| 565 |
+
name: MTEB FiQA2018
|
| 566 |
+
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
|
| 567 |
+
split: test
|
| 568 |
+
type: mteb/fiqa
|
| 569 |
+
metrics:
|
| 570 |
+
- type: map_at_1
|
| 571 |
+
value: 34.866
|
| 572 |
+
- type: map_at_10
|
| 573 |
+
value: 58.06099999999999
|
| 574 |
+
- type: map_at_100
|
| 575 |
+
value: 60.028999999999996
|
| 576 |
+
- type: map_at_1000
|
| 577 |
+
value: 60.119
|
| 578 |
+
- type: map_at_3
|
| 579 |
+
value: 51.304
|
| 580 |
+
- type: map_at_5
|
| 581 |
+
value: 55.054
|
| 582 |
+
- type: mrr_at_1
|
| 583 |
+
value: 0.0
|
| 584 |
+
- type: mrr_at_10
|
| 585 |
+
value: 0.0
|
| 586 |
+
- type: mrr_at_100
|
| 587 |
+
value: 0.0
|
| 588 |
+
- type: mrr_at_1000
|
| 589 |
+
value: 0.0
|
| 590 |
+
- type: mrr_at_3
|
| 591 |
+
value: 0.0
|
| 592 |
+
- type: mrr_at_5
|
| 593 |
+
value: 0.0
|
| 594 |
+
- type: ndcg_at_1
|
| 595 |
+
value: 64.815
|
| 596 |
+
- type: ndcg_at_10
|
| 597 |
+
value: 65.729
|
| 598 |
+
- type: ndcg_at_100
|
| 599 |
+
value: 71.14
|
| 600 |
+
- type: ndcg_at_1000
|
| 601 |
+
value: 72.336
|
| 602 |
+
- type: ndcg_at_3
|
| 603 |
+
value: 61.973
|
| 604 |
+
- type: ndcg_at_5
|
| 605 |
+
value: 62.858000000000004
|
| 606 |
+
- type: precision_at_1
|
| 607 |
+
value: 64.815
|
| 608 |
+
- type: precision_at_10
|
| 609 |
+
value: 17.87
|
| 610 |
+
- type: precision_at_100
|
| 611 |
+
value: 2.373
|
| 612 |
+
- type: precision_at_1000
|
| 613 |
+
value: 0.258
|
| 614 |
+
- type: precision_at_3
|
| 615 |
+
value: 41.152
|
| 616 |
+
- type: precision_at_5
|
| 617 |
+
value: 29.568
|
| 618 |
+
- type: recall_at_1
|
| 619 |
+
value: 34.866
|
| 620 |
+
- type: recall_at_10
|
| 621 |
+
value: 72.239
|
| 622 |
+
- type: recall_at_100
|
| 623 |
+
value: 91.19
|
| 624 |
+
- type: recall_at_1000
|
| 625 |
+
value: 98.154
|
| 626 |
+
- type: recall_at_3
|
| 627 |
+
value: 56.472
|
| 628 |
+
- type: recall_at_5
|
| 629 |
+
value: 63.157
|
| 630 |
+
- type: main_score
|
| 631 |
+
value: 65.729
|
| 632 |
+
task:
|
| 633 |
+
type: Retrieval
|
| 634 |
+
- dataset:
|
| 635 |
+
config: default
|
| 636 |
+
name: MTEB HotpotQA
|
| 637 |
+
revision: ab518f4d6fcca38d87c25209f94beba119d02014
|
| 638 |
+
split: test
|
| 639 |
+
type: mteb/hotpotqa
|
| 640 |
+
metrics:
|
| 641 |
+
- type: map_at_1
|
| 642 |
+
value: 44.651999999999994
|
| 643 |
+
- type: map_at_10
|
| 644 |
+
value: 79.95100000000001
|
| 645 |
+
- type: map_at_100
|
| 646 |
+
value: 80.51700000000001
|
| 647 |
+
- type: map_at_1000
|
| 648 |
+
value: 80.542
|
| 649 |
+
- type: map_at_3
|
| 650 |
+
value: 77.008
|
| 651 |
+
- type: map_at_5
|
| 652 |
+
value: 78.935
|
| 653 |
+
- type: mrr_at_1
|
| 654 |
+
value: 0.0
|
| 655 |
+
- type: mrr_at_10
|
| 656 |
+
value: 0.0
|
| 657 |
+
- type: mrr_at_100
|
| 658 |
+
value: 0.0
|
| 659 |
+
- type: mrr_at_1000
|
| 660 |
+
value: 0.0
|
| 661 |
+
- type: mrr_at_3
|
| 662 |
+
value: 0.0
|
| 663 |
+
- type: mrr_at_5
|
| 664 |
+
value: 0.0
|
| 665 |
+
- type: ndcg_at_1
|
| 666 |
+
value: 89.305
|
| 667 |
+
- type: ndcg_at_10
|
| 668 |
+
value: 85.479
|
| 669 |
+
- type: ndcg_at_100
|
| 670 |
+
value: 87.235
|
| 671 |
+
- type: ndcg_at_1000
|
| 672 |
+
value: 87.669
|
| 673 |
+
- type: ndcg_at_3
|
| 674 |
+
value: 81.648
|
| 675 |
+
- type: ndcg_at_5
|
| 676 |
+
value: 83.88600000000001
|
| 677 |
+
- type: precision_at_1
|
| 678 |
+
value: 89.305
|
| 679 |
+
- type: precision_at_10
|
| 680 |
+
value: 17.807000000000002
|
| 681 |
+
- type: precision_at_100
|
| 682 |
+
value: 1.9140000000000001
|
| 683 |
+
- type: precision_at_1000
|
| 684 |
+
value: 0.197
|
| 685 |
+
- type: precision_at_3
|
| 686 |
+
value: 53.756
|
| 687 |
+
- type: precision_at_5
|
| 688 |
+
value: 34.018
|
| 689 |
+
- type: recall_at_1
|
| 690 |
+
value: 44.651999999999994
|
| 691 |
+
- type: recall_at_10
|
| 692 |
+
value: 89.034
|
| 693 |
+
- type: recall_at_100
|
| 694 |
+
value: 95.719
|
| 695 |
+
- type: recall_at_1000
|
| 696 |
+
value: 98.535
|
| 697 |
+
- type: recall_at_3
|
| 698 |
+
value: 80.635
|
| 699 |
+
- type: recall_at_5
|
| 700 |
+
value: 85.044
|
| 701 |
+
- type: main_score
|
| 702 |
+
value: 85.479
|
| 703 |
+
task:
|
| 704 |
+
type: Retrieval
|
| 705 |
+
- dataset:
|
| 706 |
+
config: default
|
| 707 |
+
name: MTEB ImdbClassification
|
| 708 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
| 709 |
+
split: test
|
| 710 |
+
type: mteb/imdb
|
| 711 |
+
metrics:
|
| 712 |
+
- type: accuracy
|
| 713 |
+
value: 97.1376
|
| 714 |
+
- type: accuracy_stderr
|
| 715 |
+
value: 0.04571914259913447
|
| 716 |
+
- type: ap
|
| 717 |
+
value: 95.92783808558808
|
| 718 |
+
- type: ap_stderr
|
| 719 |
+
value: 0.05063782483358255
|
| 720 |
+
- type: f1
|
| 721 |
+
value: 97.13755519177172
|
| 722 |
+
- type: f1_stderr
|
| 723 |
+
value: 0.04575943074086138
|
| 724 |
+
- type: main_score
|
| 725 |
+
value: 97.1376
|
| 726 |
+
task:
|
| 727 |
+
type: Classification
|
| 728 |
+
- dataset:
|
| 729 |
+
config: default
|
| 730 |
+
name: MTEB MSMARCO
|
| 731 |
+
revision: c5a29a104738b98a9e76336939199e264163d4a0
|
| 732 |
+
split: dev
|
| 733 |
+
type: mteb/msmarco
|
| 734 |
+
metrics:
|
| 735 |
+
- type: map_at_1
|
| 736 |
+
value: 0.0
|
| 737 |
+
- type: map_at_10
|
| 738 |
+
value: 38.342
|
| 739 |
+
- type: map_at_100
|
| 740 |
+
value: 0.0
|
| 741 |
+
- type: map_at_1000
|
| 742 |
+
value: 0.0
|
| 743 |
+
- type: map_at_3
|
| 744 |
+
value: 0.0
|
| 745 |
+
- type: map_at_5
|
| 746 |
+
value: 0.0
|
| 747 |
+
- type: mrr_at_1
|
| 748 |
+
value: 0.0
|
| 749 |
+
- type: mrr_at_10
|
| 750 |
+
value: 0.0
|
| 751 |
+
- type: mrr_at_100
|
| 752 |
+
value: 0.0
|
| 753 |
+
- type: mrr_at_1000
|
| 754 |
+
value: 0.0
|
| 755 |
+
- type: mrr_at_3
|
| 756 |
+
value: 0.0
|
| 757 |
+
- type: mrr_at_5
|
| 758 |
+
value: 0.0
|
| 759 |
+
- type: ndcg_at_1
|
| 760 |
+
value: 0.0
|
| 761 |
+
- type: ndcg_at_10
|
| 762 |
+
value: 45.629999999999995
|
| 763 |
+
- type: ndcg_at_100
|
| 764 |
+
value: 0.0
|
| 765 |
+
- type: ndcg_at_1000
|
| 766 |
+
value: 0.0
|
| 767 |
+
- type: ndcg_at_3
|
| 768 |
+
value: 0.0
|
| 769 |
+
- type: ndcg_at_5
|
| 770 |
+
value: 0.0
|
| 771 |
+
- type: precision_at_1
|
| 772 |
+
value: 0.0
|
| 773 |
+
- type: precision_at_10
|
| 774 |
+
value: 7.119000000000001
|
| 775 |
+
- type: precision_at_100
|
| 776 |
+
value: 0.0
|
| 777 |
+
- type: precision_at_1000
|
| 778 |
+
value: 0.0
|
| 779 |
+
- type: precision_at_3
|
| 780 |
+
value: 0.0
|
| 781 |
+
- type: precision_at_5
|
| 782 |
+
value: 0.0
|
| 783 |
+
- type: recall_at_1
|
| 784 |
+
value: 0.0
|
| 785 |
+
- type: recall_at_10
|
| 786 |
+
value: 67.972
|
| 787 |
+
- type: recall_at_100
|
| 788 |
+
value: 0.0
|
| 789 |
+
- type: recall_at_1000
|
| 790 |
+
value: 0.0
|
| 791 |
+
- type: recall_at_3
|
| 792 |
+
value: 0.0
|
| 793 |
+
- type: recall_at_5
|
| 794 |
+
value: 0.0
|
| 795 |
+
- type: main_score
|
| 796 |
+
value: 45.629999999999995
|
| 797 |
+
task:
|
| 798 |
+
type: Retrieval
|
| 799 |
+
- dataset:
|
| 800 |
+
config: en
|
| 801 |
+
name: MTEB MTOPDomainClassification (en)
|
| 802 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
| 803 |
+
split: test
|
| 804 |
+
type: mteb/mtop_domain
|
| 805 |
+
metrics:
|
| 806 |
+
- type: accuracy
|
| 807 |
+
value: 99.24988600091199
|
| 808 |
+
- type: accuracy_stderr
|
| 809 |
+
value: 0.04496826931900734
|
| 810 |
+
- type: f1
|
| 811 |
+
value: 99.15933275095276
|
| 812 |
+
- type: f1_stderr
|
| 813 |
+
value: 0.05565039139747446
|
| 814 |
+
- type: main_score
|
| 815 |
+
value: 99.24988600091199
|
| 816 |
+
task:
|
| 817 |
+
type: Classification
|
| 818 |
+
- dataset:
|
| 819 |
+
config: en
|
| 820 |
+
name: MTEB MTOPIntentClassification (en)
|
| 821 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
| 822 |
+
split: test
|
| 823 |
+
type: mteb/mtop_intent
|
| 824 |
+
metrics:
|
| 825 |
+
- type: accuracy
|
| 826 |
+
value: 94.3684450524396
|
| 827 |
+
- type: accuracy_stderr
|
| 828 |
+
value: 0.8436548701322188
|
| 829 |
+
- type: f1
|
| 830 |
+
value: 77.33022623133307
|
| 831 |
+
- type: f1_stderr
|
| 832 |
+
value: 0.9228425861187275
|
| 833 |
+
- type: main_score
|
| 834 |
+
value: 94.3684450524396
|
| 835 |
+
task:
|
| 836 |
+
type: Classification
|
| 837 |
+
- dataset:
|
| 838 |
+
config: en
|
| 839 |
+
name: MTEB MassiveIntentClassification (en)
|
| 840 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 841 |
+
split: test
|
| 842 |
+
type: mteb/amazon_massive_intent
|
| 843 |
+
metrics:
|
| 844 |
+
- type: accuracy
|
| 845 |
+
value: 86.09616677874916
|
| 846 |
+
- type: accuracy_stderr
|
| 847 |
+
value: 0.9943208055590853
|
| 848 |
+
- type: f1
|
| 849 |
+
value: 83.4902056490062
|
| 850 |
+
- type: f1_stderr
|
| 851 |
+
value: 0.7626189310074184
|
| 852 |
+
- type: main_score
|
| 853 |
+
value: 86.09616677874916
|
| 854 |
+
task:
|
| 855 |
+
type: Classification
|
| 856 |
+
- dataset:
|
| 857 |
+
config: en
|
| 858 |
+
name: MTEB MassiveScenarioClassification (en)
|
| 859 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 860 |
+
split: test
|
| 861 |
+
type: mteb/amazon_massive_scenario
|
| 862 |
+
metrics:
|
| 863 |
+
- type: accuracy
|
| 864 |
+
value: 92.17215870880968
|
| 865 |
+
- type: accuracy_stderr
|
| 866 |
+
value: 0.25949941333658166
|
| 867 |
+
- type: f1
|
| 868 |
+
value: 91.36757392422702
|
| 869 |
+
- type: f1_stderr
|
| 870 |
+
value: 0.29139507298154815
|
| 871 |
+
- type: main_score
|
| 872 |
+
value: 92.17215870880968
|
| 873 |
+
task:
|
| 874 |
+
type: Classification
|
| 875 |
+
- dataset:
|
| 876 |
+
config: default
|
| 877 |
+
name: MTEB MedrxivClusteringP2P
|
| 878 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
| 879 |
+
split: test
|
| 880 |
+
type: mteb/medrxiv-clustering-p2p
|
| 881 |
+
metrics:
|
| 882 |
+
- type: main_score
|
| 883 |
+
value: 46.09497344077905
|
| 884 |
+
- type: v_measure
|
| 885 |
+
value: 46.09497344077905
|
| 886 |
+
- type: v_measure_std
|
| 887 |
+
value: 1.44871520869784
|
| 888 |
+
task:
|
| 889 |
+
type: Clustering
|
| 890 |
+
- dataset:
|
| 891 |
+
config: default
|
| 892 |
+
name: MTEB MedrxivClusteringS2S
|
| 893 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
| 894 |
+
split: test
|
| 895 |
+
type: mteb/medrxiv-clustering-s2s
|
| 896 |
+
metrics:
|
| 897 |
+
- type: main_score
|
| 898 |
+
value: 44.861049989560684
|
| 899 |
+
- type: v_measure
|
| 900 |
+
value: 44.861049989560684
|
| 901 |
+
- type: v_measure_std
|
| 902 |
+
value: 1.432199293162203
|
| 903 |
+
task:
|
| 904 |
+
type: Clustering
|
| 905 |
+
- dataset:
|
| 906 |
+
config: default
|
| 907 |
+
name: MTEB MindSmallReranking
|
| 908 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
| 909 |
+
split: test
|
| 910 |
+
type: mteb/mind_small
|
| 911 |
+
metrics:
|
| 912 |
+
- type: map
|
| 913 |
+
value: 31.75936162919999
|
| 914 |
+
- type: mrr
|
| 915 |
+
value: 32.966812736541236
|
| 916 |
+
- type: main_score
|
| 917 |
+
value: 31.75936162919999
|
| 918 |
+
task:
|
| 919 |
+
type: Reranking
|
| 920 |
+
- dataset:
|
| 921 |
+
config: default
|
| 922 |
+
name: MTEB NFCorpus
|
| 923 |
+
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
|
| 924 |
+
split: test
|
| 925 |
+
type: mteb/nfcorpus
|
| 926 |
+
metrics:
|
| 927 |
+
- type: map_at_1
|
| 928 |
+
value: 7.893999999999999
|
| 929 |
+
- type: map_at_10
|
| 930 |
+
value: 17.95
|
| 931 |
+
- type: map_at_100
|
| 932 |
+
value: 23.474
|
| 933 |
+
- type: map_at_1000
|
| 934 |
+
value: 25.412000000000003
|
| 935 |
+
- type: map_at_3
|
| 936 |
+
value: 12.884
|
| 937 |
+
- type: map_at_5
|
| 938 |
+
value: 15.171000000000001
|
| 939 |
+
- type: mrr_at_1
|
| 940 |
+
value: 0.0
|
| 941 |
+
- type: mrr_at_10
|
| 942 |
+
value: 0.0
|
| 943 |
+
- type: mrr_at_100
|
| 944 |
+
value: 0.0
|
| 945 |
+
- type: mrr_at_1000
|
| 946 |
+
value: 0.0
|
| 947 |
+
- type: mrr_at_3
|
| 948 |
+
value: 0.0
|
| 949 |
+
- type: mrr_at_5
|
| 950 |
+
value: 0.0
|
| 951 |
+
- type: ndcg_at_1
|
| 952 |
+
value: 55.728
|
| 953 |
+
- type: ndcg_at_10
|
| 954 |
+
value: 45.174
|
| 955 |
+
- type: ndcg_at_100
|
| 956 |
+
value: 42.18
|
| 957 |
+
- type: ndcg_at_1000
|
| 958 |
+
value: 50.793
|
| 959 |
+
- type: ndcg_at_3
|
| 960 |
+
value: 50.322
|
| 961 |
+
- type: ndcg_at_5
|
| 962 |
+
value: 48.244
|
| 963 |
+
- type: precision_at_1
|
| 964 |
+
value: 57.276
|
| 965 |
+
- type: precision_at_10
|
| 966 |
+
value: 33.437
|
| 967 |
+
- type: precision_at_100
|
| 968 |
+
value: 10.671999999999999
|
| 969 |
+
- type: precision_at_1000
|
| 970 |
+
value: 2.407
|
| 971 |
+
- type: precision_at_3
|
| 972 |
+
value: 46.646
|
| 973 |
+
- type: precision_at_5
|
| 974 |
+
value: 41.672
|
| 975 |
+
- type: recall_at_1
|
| 976 |
+
value: 7.893999999999999
|
| 977 |
+
- type: recall_at_10
|
| 978 |
+
value: 22.831000000000003
|
| 979 |
+
- type: recall_at_100
|
| 980 |
+
value: 43.818
|
| 981 |
+
- type: recall_at_1000
|
| 982 |
+
value: 75.009
|
| 983 |
+
- type: recall_at_3
|
| 984 |
+
value: 14.371
|
| 985 |
+
- type: recall_at_5
|
| 986 |
+
value: 17.752000000000002
|
| 987 |
+
- type: main_score
|
| 988 |
+
value: 45.174
|
| 989 |
+
task:
|
| 990 |
+
type: Retrieval
|
| 991 |
+
- dataset:
|
| 992 |
+
config: default
|
| 993 |
+
name: MTEB NQ
|
| 994 |
+
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
|
| 995 |
+
split: test
|
| 996 |
+
type: mteb/nq
|
| 997 |
+
metrics:
|
| 998 |
+
- type: map_at_1
|
| 999 |
+
value: 49.351
|
| 1000 |
+
- type: map_at_10
|
| 1001 |
+
value: 66.682
|
| 1002 |
+
- type: map_at_100
|
| 1003 |
+
value: 67.179
|
| 1004 |
+
- type: map_at_1000
|
| 1005 |
+
value: 67.18499999999999
|
| 1006 |
+
- type: map_at_3
|
| 1007 |
+
value: 62.958999999999996
|
| 1008 |
+
- type: map_at_5
|
| 1009 |
+
value: 65.364
|
| 1010 |
+
- type: mrr_at_1
|
| 1011 |
+
value: 0.0
|
| 1012 |
+
- type: mrr_at_10
|
| 1013 |
+
value: 0.0
|
| 1014 |
+
- type: mrr_at_100
|
| 1015 |
+
value: 0.0
|
| 1016 |
+
- type: mrr_at_1000
|
| 1017 |
+
value: 0.0
|
| 1018 |
+
- type: mrr_at_3
|
| 1019 |
+
value: 0.0
|
| 1020 |
+
- type: mrr_at_5
|
| 1021 |
+
value: 0.0
|
| 1022 |
+
- type: ndcg_at_1
|
| 1023 |
+
value: 55.417
|
| 1024 |
+
- type: ndcg_at_10
|
| 1025 |
+
value: 73.568
|
| 1026 |
+
- type: ndcg_at_100
|
| 1027 |
+
value: 75.35
|
| 1028 |
+
- type: ndcg_at_1000
|
| 1029 |
+
value: 75.478
|
| 1030 |
+
- type: ndcg_at_3
|
| 1031 |
+
value: 67.201
|
| 1032 |
+
- type: ndcg_at_5
|
| 1033 |
+
value: 70.896
|
| 1034 |
+
- type: precision_at_1
|
| 1035 |
+
value: 55.417
|
| 1036 |
+
- type: precision_at_10
|
| 1037 |
+
value: 11.036999999999999
|
| 1038 |
+
- type: precision_at_100
|
| 1039 |
+
value: 1.204
|
| 1040 |
+
- type: precision_at_1000
|
| 1041 |
+
value: 0.121
|
| 1042 |
+
- type: precision_at_3
|
| 1043 |
+
value: 29.654000000000003
|
| 1044 |
+
- type: precision_at_5
|
| 1045 |
+
value: 20.006
|
| 1046 |
+
- type: recall_at_1
|
| 1047 |
+
value: 49.351
|
| 1048 |
+
- type: recall_at_10
|
| 1049 |
+
value: 91.667
|
| 1050 |
+
- type: recall_at_100
|
| 1051 |
+
value: 98.89
|
| 1052 |
+
- type: recall_at_1000
|
| 1053 |
+
value: 99.812
|
| 1054 |
+
- type: recall_at_3
|
| 1055 |
+
value: 75.715
|
| 1056 |
+
- type: recall_at_5
|
| 1057 |
+
value: 84.072
|
| 1058 |
+
- type: main_score
|
| 1059 |
+
value: 73.568
|
| 1060 |
+
task:
|
| 1061 |
+
type: Retrieval
|
| 1062 |
+
- dataset:
|
| 1063 |
+
config: default
|
| 1064 |
+
name: MTEB QuoraRetrieval
|
| 1065 |
+
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
|
| 1066 |
+
split: test
|
| 1067 |
+
type: mteb/quora
|
| 1068 |
+
metrics:
|
| 1069 |
+
- type: map_at_1
|
| 1070 |
+
value: 71.358
|
| 1071 |
+
- type: map_at_10
|
| 1072 |
+
value: 85.474
|
| 1073 |
+
- type: map_at_100
|
| 1074 |
+
value: 86.101
|
| 1075 |
+
- type: map_at_1000
|
| 1076 |
+
value: 86.114
|
| 1077 |
+
- type: map_at_3
|
| 1078 |
+
value: 82.562
|
| 1079 |
+
- type: map_at_5
|
| 1080 |
+
value: 84.396
|
| 1081 |
+
- type: mrr_at_1
|
| 1082 |
+
value: 0.0
|
| 1083 |
+
- type: mrr_at_10
|
| 1084 |
+
value: 0.0
|
| 1085 |
+
- type: mrr_at_100
|
| 1086 |
+
value: 0.0
|
| 1087 |
+
- type: mrr_at_1000
|
| 1088 |
+
value: 0.0
|
| 1089 |
+
- type: mrr_at_3
|
| 1090 |
+
value: 0.0
|
| 1091 |
+
- type: mrr_at_5
|
| 1092 |
+
value: 0.0
|
| 1093 |
+
- type: ndcg_at_1
|
| 1094 |
+
value: 82.12
|
| 1095 |
+
- type: ndcg_at_10
|
| 1096 |
+
value: 89.035
|
| 1097 |
+
- type: ndcg_at_100
|
| 1098 |
+
value: 90.17399999999999
|
| 1099 |
+
- type: ndcg_at_1000
|
| 1100 |
+
value: 90.243
|
| 1101 |
+
- type: ndcg_at_3
|
| 1102 |
+
value: 86.32300000000001
|
| 1103 |
+
- type: ndcg_at_5
|
| 1104 |
+
value: 87.85
|
| 1105 |
+
- type: precision_at_1
|
| 1106 |
+
value: 82.12
|
| 1107 |
+
- type: precision_at_10
|
| 1108 |
+
value: 13.55
|
| 1109 |
+
- type: precision_at_100
|
| 1110 |
+
value: 1.54
|
| 1111 |
+
- type: precision_at_1000
|
| 1112 |
+
value: 0.157
|
| 1113 |
+
- type: precision_at_3
|
| 1114 |
+
value: 37.89
|
| 1115 |
+
- type: precision_at_5
|
| 1116 |
+
value: 24.9
|
| 1117 |
+
- type: recall_at_1
|
| 1118 |
+
value: 71.358
|
| 1119 |
+
- type: recall_at_10
|
| 1120 |
+
value: 95.855
|
| 1121 |
+
- type: recall_at_100
|
| 1122 |
+
value: 99.711
|
| 1123 |
+
- type: recall_at_1000
|
| 1124 |
+
value: 99.994
|
| 1125 |
+
- type: recall_at_3
|
| 1126 |
+
value: 88.02
|
| 1127 |
+
- type: recall_at_5
|
| 1128 |
+
value: 92.378
|
| 1129 |
+
- type: main_score
|
| 1130 |
+
value: 89.035
|
| 1131 |
+
task:
|
| 1132 |
+
type: Retrieval
|
| 1133 |
+
- dataset:
|
| 1134 |
+
config: default
|
| 1135 |
+
name: MTEB RedditClustering
|
| 1136 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
| 1137 |
+
split: test
|
| 1138 |
+
type: mteb/reddit-clustering
|
| 1139 |
+
metrics:
|
| 1140 |
+
- type: main_score
|
| 1141 |
+
value: 71.0984522742521
|
| 1142 |
+
- type: v_measure
|
| 1143 |
+
value: 71.0984522742521
|
| 1144 |
+
- type: v_measure_std
|
| 1145 |
+
value: 3.5668139917058044
|
| 1146 |
+
task:
|
| 1147 |
+
type: Clustering
|
| 1148 |
+
- dataset:
|
| 1149 |
+
config: default
|
| 1150 |
+
name: MTEB RedditClusteringP2P
|
| 1151 |
+
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
|
| 1152 |
+
split: test
|
| 1153 |
+
type: mteb/reddit-clustering-p2p
|
| 1154 |
+
metrics:
|
| 1155 |
+
- type: main_score
|
| 1156 |
+
value: 74.94499641904133
|
| 1157 |
+
- type: v_measure
|
| 1158 |
+
value: 74.94499641904133
|
| 1159 |
+
- type: v_measure_std
|
| 1160 |
+
value: 11.419672879389248
|
| 1161 |
+
task:
|
| 1162 |
+
type: Clustering
|
| 1163 |
+
- dataset:
|
| 1164 |
+
config: default
|
| 1165 |
+
name: MTEB SCIDOCS
|
| 1166 |
+
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
|
| 1167 |
+
split: test
|
| 1168 |
+
type: mteb/scidocs
|
| 1169 |
+
metrics:
|
| 1170 |
+
- type: map_at_1
|
| 1171 |
+
value: 5.343
|
| 1172 |
+
- type: map_at_10
|
| 1173 |
+
value: 13.044
|
| 1174 |
+
- type: map_at_100
|
| 1175 |
+
value: 15.290999999999999
|
| 1176 |
+
- type: map_at_1000
|
| 1177 |
+
value: 15.609
|
| 1178 |
+
- type: map_at_3
|
| 1179 |
+
value: 9.227
|
| 1180 |
+
- type: map_at_5
|
| 1181 |
+
value: 11.158
|
| 1182 |
+
- type: mrr_at_1
|
| 1183 |
+
value: 0.0
|
| 1184 |
+
- type: mrr_at_10
|
| 1185 |
+
value: 0.0
|
| 1186 |
+
- type: mrr_at_100
|
| 1187 |
+
value: 0.0
|
| 1188 |
+
- type: mrr_at_1000
|
| 1189 |
+
value: 0.0
|
| 1190 |
+
- type: mrr_at_3
|
| 1191 |
+
value: 0.0
|
| 1192 |
+
- type: mrr_at_5
|
| 1193 |
+
value: 0.0
|
| 1194 |
+
- type: ndcg_at_1
|
| 1195 |
+
value: 26.3
|
| 1196 |
+
- type: ndcg_at_10
|
| 1197 |
+
value: 21.901
|
| 1198 |
+
- type: ndcg_at_100
|
| 1199 |
+
value: 30.316
|
| 1200 |
+
- type: ndcg_at_1000
|
| 1201 |
+
value: 35.547000000000004
|
| 1202 |
+
- type: ndcg_at_3
|
| 1203 |
+
value: 20.560000000000002
|
| 1204 |
+
- type: ndcg_at_5
|
| 1205 |
+
value: 18.187
|
| 1206 |
+
- type: precision_at_1
|
| 1207 |
+
value: 26.3
|
| 1208 |
+
- type: precision_at_10
|
| 1209 |
+
value: 11.34
|
| 1210 |
+
- type: precision_at_100
|
| 1211 |
+
value: 2.344
|
| 1212 |
+
- type: precision_at_1000
|
| 1213 |
+
value: 0.359
|
| 1214 |
+
- type: precision_at_3
|
| 1215 |
+
value: 18.967
|
| 1216 |
+
- type: precision_at_5
|
| 1217 |
+
value: 15.920000000000002
|
| 1218 |
+
- type: recall_at_1
|
| 1219 |
+
value: 5.343
|
| 1220 |
+
- type: recall_at_10
|
| 1221 |
+
value: 22.997
|
| 1222 |
+
- type: recall_at_100
|
| 1223 |
+
value: 47.562
|
| 1224 |
+
- type: recall_at_1000
|
| 1225 |
+
value: 72.94500000000001
|
| 1226 |
+
- type: recall_at_3
|
| 1227 |
+
value: 11.533
|
| 1228 |
+
- type: recall_at_5
|
| 1229 |
+
value: 16.148
|
| 1230 |
+
- type: main_score
|
| 1231 |
+
value: 21.901
|
| 1232 |
+
task:
|
| 1233 |
+
type: Retrieval
|
| 1234 |
+
- dataset:
|
| 1235 |
+
config: default
|
| 1236 |
+
name: MTEB SICK-R
|
| 1237 |
+
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
|
| 1238 |
+
split: test
|
| 1239 |
+
type: mteb/sickr-sts
|
| 1240 |
+
metrics:
|
| 1241 |
+
- type: cosine_pearson
|
| 1242 |
+
value: 87.3054603493591
|
| 1243 |
+
- type: cosine_spearman
|
| 1244 |
+
value: 82.14763206055602
|
| 1245 |
+
- type: manhattan_pearson
|
| 1246 |
+
value: 84.78737790237557
|
| 1247 |
+
- type: manhattan_spearman
|
| 1248 |
+
value: 81.88455356002758
|
| 1249 |
+
- type: euclidean_pearson
|
| 1250 |
+
value: 85.00668629311117
|
| 1251 |
+
- type: euclidean_spearman
|
| 1252 |
+
value: 82.14763037860851
|
| 1253 |
+
- type: main_score
|
| 1254 |
+
value: 82.14763206055602
|
| 1255 |
+
task:
|
| 1256 |
+
type: STS
|
| 1257 |
+
- dataset:
|
| 1258 |
+
config: default
|
| 1259 |
+
name: MTEB STS12
|
| 1260 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
| 1261 |
+
split: test
|
| 1262 |
+
type: mteb/sts12-sts
|
| 1263 |
+
metrics:
|
| 1264 |
+
- type: cosine_pearson
|
| 1265 |
+
value: 86.6911864687294
|
| 1266 |
+
- type: cosine_spearman
|
| 1267 |
+
value: 77.89286260403269
|
| 1268 |
+
- type: manhattan_pearson
|
| 1269 |
+
value: 82.87240347680857
|
| 1270 |
+
- type: manhattan_spearman
|
| 1271 |
+
value: 78.10055393740326
|
| 1272 |
+
- type: euclidean_pearson
|
| 1273 |
+
value: 82.72282535777123
|
| 1274 |
+
- type: euclidean_spearman
|
| 1275 |
+
value: 77.89256648406325
|
| 1276 |
+
- type: main_score
|
| 1277 |
+
value: 77.89286260403269
|
| 1278 |
+
task:
|
| 1279 |
+
type: STS
|
| 1280 |
+
- dataset:
|
| 1281 |
+
config: default
|
| 1282 |
+
name: MTEB STS13
|
| 1283 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
| 1284 |
+
split: test
|
| 1285 |
+
type: mteb/sts13-sts
|
| 1286 |
+
metrics:
|
| 1287 |
+
- type: cosine_pearson
|
| 1288 |
+
value: 87.7220832598633
|
| 1289 |
+
- type: cosine_spearman
|
| 1290 |
+
value: 88.30238972017452
|
| 1291 |
+
- type: manhattan_pearson
|
| 1292 |
+
value: 87.88214789140248
|
| 1293 |
+
- type: manhattan_spearman
|
| 1294 |
+
value: 88.24770220032391
|
| 1295 |
+
- type: euclidean_pearson
|
| 1296 |
+
value: 87.98610386257103
|
| 1297 |
+
- type: euclidean_spearman
|
| 1298 |
+
value: 88.30238972017452
|
| 1299 |
+
- type: main_score
|
| 1300 |
+
value: 88.30238972017452
|
| 1301 |
+
task:
|
| 1302 |
+
type: STS
|
| 1303 |
+
- dataset:
|
| 1304 |
+
config: default
|
| 1305 |
+
name: MTEB STS14
|
| 1306 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
| 1307 |
+
split: test
|
| 1308 |
+
type: mteb/sts14-sts
|
| 1309 |
+
metrics:
|
| 1310 |
+
- type: cosine_pearson
|
| 1311 |
+
value: 85.70614623247714
|
| 1312 |
+
- type: cosine_spearman
|
| 1313 |
+
value: 84.29920990970672
|
| 1314 |
+
- type: manhattan_pearson
|
| 1315 |
+
value: 84.9836190531721
|
| 1316 |
+
- type: manhattan_spearman
|
| 1317 |
+
value: 84.40933470597638
|
| 1318 |
+
- type: euclidean_pearson
|
| 1319 |
+
value: 84.96652336693347
|
| 1320 |
+
- type: euclidean_spearman
|
| 1321 |
+
value: 84.29920989531965
|
| 1322 |
+
- type: main_score
|
| 1323 |
+
value: 84.29920990970672
|
| 1324 |
+
task:
|
| 1325 |
+
type: STS
|
| 1326 |
+
- dataset:
|
| 1327 |
+
config: default
|
| 1328 |
+
name: MTEB STS15
|
| 1329 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
| 1330 |
+
split: test
|
| 1331 |
+
type: mteb/sts15-sts
|
| 1332 |
+
metrics:
|
| 1333 |
+
- type: cosine_pearson
|
| 1334 |
+
value: 88.4169972425264
|
| 1335 |
+
- type: cosine_spearman
|
| 1336 |
+
value: 89.03555007807218
|
| 1337 |
+
- type: manhattan_pearson
|
| 1338 |
+
value: 88.83068699455478
|
| 1339 |
+
- type: manhattan_spearman
|
| 1340 |
+
value: 89.21877175674125
|
| 1341 |
+
- type: euclidean_pearson
|
| 1342 |
+
value: 88.7251052947544
|
| 1343 |
+
- type: euclidean_spearman
|
| 1344 |
+
value: 89.03557389893083
|
| 1345 |
+
- type: main_score
|
| 1346 |
+
value: 89.03555007807218
|
| 1347 |
+
task:
|
| 1348 |
+
type: STS
|
| 1349 |
+
- dataset:
|
| 1350 |
+
config: default
|
| 1351 |
+
name: MTEB STS16
|
| 1352 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
| 1353 |
+
split: test
|
| 1354 |
+
type: mteb/sts16-sts
|
| 1355 |
+
metrics:
|
| 1356 |
+
- type: cosine_pearson
|
| 1357 |
+
value: 85.63830579034632
|
| 1358 |
+
- type: cosine_spearman
|
| 1359 |
+
value: 86.77353371581373
|
| 1360 |
+
- type: manhattan_pearson
|
| 1361 |
+
value: 86.24830492396637
|
| 1362 |
+
- type: manhattan_spearman
|
| 1363 |
+
value: 86.96754348626189
|
| 1364 |
+
- type: euclidean_pearson
|
| 1365 |
+
value: 86.09837038778359
|
| 1366 |
+
- type: euclidean_spearman
|
| 1367 |
+
value: 86.77353371581373
|
| 1368 |
+
- type: main_score
|
| 1369 |
+
value: 86.77353371581373
|
| 1370 |
+
task:
|
| 1371 |
+
type: STS
|
| 1372 |
+
- dataset:
|
| 1373 |
+
config: en-en
|
| 1374 |
+
name: MTEB STS17 (en-en)
|
| 1375 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
| 1376 |
+
split: test
|
| 1377 |
+
type: mteb/sts17-crosslingual-sts
|
| 1378 |
+
metrics:
|
| 1379 |
+
- type: cosine_pearson
|
| 1380 |
+
value: 91.2204675588959
|
| 1381 |
+
- type: cosine_spearman
|
| 1382 |
+
value: 90.66976712249057
|
| 1383 |
+
- type: manhattan_pearson
|
| 1384 |
+
value: 91.11007808242346
|
| 1385 |
+
- type: manhattan_spearman
|
| 1386 |
+
value: 90.51739232964488
|
| 1387 |
+
- type: euclidean_pearson
|
| 1388 |
+
value: 91.19588941007903
|
| 1389 |
+
- type: euclidean_spearman
|
| 1390 |
+
value: 90.66976712249057
|
| 1391 |
+
- type: main_score
|
| 1392 |
+
value: 90.66976712249057
|
| 1393 |
+
task:
|
| 1394 |
+
type: STS
|
| 1395 |
+
- dataset:
|
| 1396 |
+
config: en
|
| 1397 |
+
name: MTEB STS22 (en)
|
| 1398 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
| 1399 |
+
split: test
|
| 1400 |
+
type: mteb/sts22-crosslingual-sts
|
| 1401 |
+
metrics:
|
| 1402 |
+
- type: cosine_pearson
|
| 1403 |
+
value: 69.34416749707114
|
| 1404 |
+
- type: cosine_spearman
|
| 1405 |
+
value: 68.11632448161046
|
| 1406 |
+
- type: manhattan_pearson
|
| 1407 |
+
value: 68.99243488935281
|
| 1408 |
+
- type: manhattan_spearman
|
| 1409 |
+
value: 67.8398546438258
|
| 1410 |
+
- type: euclidean_pearson
|
| 1411 |
+
value: 69.06376010216088
|
| 1412 |
+
- type: euclidean_spearman
|
| 1413 |
+
value: 68.11632448161046
|
| 1414 |
+
- type: main_score
|
| 1415 |
+
value: 68.11632448161046
|
| 1416 |
+
task:
|
| 1417 |
+
type: STS
|
| 1418 |
+
- dataset:
|
| 1419 |
+
config: default
|
| 1420 |
+
name: MTEB STSBenchmark
|
| 1421 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
| 1422 |
+
split: test
|
| 1423 |
+
type: mteb/stsbenchmark-sts
|
| 1424 |
+
metrics:
|
| 1425 |
+
- type: cosine_pearson
|
| 1426 |
+
value: 88.10309739429758
|
| 1427 |
+
- type: cosine_spearman
|
| 1428 |
+
value: 88.40520383147418
|
| 1429 |
+
- type: manhattan_pearson
|
| 1430 |
+
value: 88.50753383813232
|
| 1431 |
+
- type: manhattan_spearman
|
| 1432 |
+
value: 88.66382629460927
|
| 1433 |
+
- type: euclidean_pearson
|
| 1434 |
+
value: 88.35050664609376
|
| 1435 |
+
- type: euclidean_spearman
|
| 1436 |
+
value: 88.40520383147418
|
| 1437 |
+
- type: main_score
|
| 1438 |
+
value: 88.40520383147418
|
| 1439 |
+
task:
|
| 1440 |
+
type: STS
|
| 1441 |
+
- dataset:
|
| 1442 |
+
config: default
|
| 1443 |
+
name: MTEB SciDocsRR
|
| 1444 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
| 1445 |
+
split: test
|
| 1446 |
+
type: mteb/scidocs-reranking
|
| 1447 |
+
metrics:
|
| 1448 |
+
- type: map
|
| 1449 |
+
value: 87.58627126942797
|
| 1450 |
+
- type: mrr
|
| 1451 |
+
value: 97.01098103058887
|
| 1452 |
+
- type: main_score
|
| 1453 |
+
value: 87.58627126942797
|
| 1454 |
+
task:
|
| 1455 |
+
type: Reranking
|
| 1456 |
+
- dataset:
|
| 1457 |
+
config: default
|
| 1458 |
+
name: MTEB SciFact
|
| 1459 |
+
revision: 0228b52cf27578f30900b9e5271d331663a030d7
|
| 1460 |
+
split: test
|
| 1461 |
+
type: mteb/scifact
|
| 1462 |
+
metrics:
|
| 1463 |
+
- type: map_at_1
|
| 1464 |
+
value: 62.883
|
| 1465 |
+
- type: map_at_10
|
| 1466 |
+
value: 75.371
|
| 1467 |
+
- type: map_at_100
|
| 1468 |
+
value: 75.66000000000001
|
| 1469 |
+
- type: map_at_1000
|
| 1470 |
+
value: 75.667
|
| 1471 |
+
- type: map_at_3
|
| 1472 |
+
value: 72.741
|
| 1473 |
+
- type: map_at_5
|
| 1474 |
+
value: 74.74
|
| 1475 |
+
- type: mrr_at_1
|
| 1476 |
+
value: 0.0
|
| 1477 |
+
- type: mrr_at_10
|
| 1478 |
+
value: 0.0
|
| 1479 |
+
- type: mrr_at_100
|
| 1480 |
+
value: 0.0
|
| 1481 |
+
- type: mrr_at_1000
|
| 1482 |
+
value: 0.0
|
| 1483 |
+
- type: mrr_at_3
|
| 1484 |
+
value: 0.0
|
| 1485 |
+
- type: mrr_at_5
|
| 1486 |
+
value: 0.0
|
| 1487 |
+
- type: ndcg_at_1
|
| 1488 |
+
value: 66.0
|
| 1489 |
+
- type: ndcg_at_10
|
| 1490 |
+
value: 80.12700000000001
|
| 1491 |
+
- type: ndcg_at_100
|
| 1492 |
+
value: 81.291
|
| 1493 |
+
- type: ndcg_at_1000
|
| 1494 |
+
value: 81.464
|
| 1495 |
+
- type: ndcg_at_3
|
| 1496 |
+
value: 76.19
|
| 1497 |
+
- type: ndcg_at_5
|
| 1498 |
+
value: 78.827
|
| 1499 |
+
- type: precision_at_1
|
| 1500 |
+
value: 66.0
|
| 1501 |
+
- type: precision_at_10
|
| 1502 |
+
value: 10.567
|
| 1503 |
+
- type: precision_at_100
|
| 1504 |
+
value: 1.117
|
| 1505 |
+
- type: precision_at_1000
|
| 1506 |
+
value: 0.11299999999999999
|
| 1507 |
+
- type: precision_at_3
|
| 1508 |
+
value: 30.333
|
| 1509 |
+
- type: precision_at_5
|
| 1510 |
+
value: 20.133000000000003
|
| 1511 |
+
- type: recall_at_1
|
| 1512 |
+
value: 62.883
|
| 1513 |
+
- type: recall_at_10
|
| 1514 |
+
value: 93.556
|
| 1515 |
+
- type: recall_at_100
|
| 1516 |
+
value: 98.667
|
| 1517 |
+
- type: recall_at_1000
|
| 1518 |
+
value: 100.0
|
| 1519 |
+
- type: recall_at_3
|
| 1520 |
+
value: 83.322
|
| 1521 |
+
- type: recall_at_5
|
| 1522 |
+
value: 89.756
|
| 1523 |
+
- type: main_score
|
| 1524 |
+
value: 80.12700000000001
|
| 1525 |
+
task:
|
| 1526 |
+
type: Retrieval
|
| 1527 |
+
- dataset:
|
| 1528 |
+
config: default
|
| 1529 |
+
name: MTEB SprintDuplicateQuestions
|
| 1530 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
| 1531 |
+
split: test
|
| 1532 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
| 1533 |
+
metrics:
|
| 1534 |
+
- type: cos_sim_accuracy
|
| 1535 |
+
value: 99.87524752475248
|
| 1536 |
+
- type: cos_sim_accuracy_threshold
|
| 1537 |
+
value: 74.86587762832642
|
| 1538 |
+
- type: cos_sim_ap
|
| 1539 |
+
value: 97.02222446606328
|
| 1540 |
+
- type: cos_sim_f1
|
| 1541 |
+
value: 93.66197183098592
|
| 1542 |
+
- type: cos_sim_f1_threshold
|
| 1543 |
+
value: 74.74223375320435
|
| 1544 |
+
- type: cos_sim_precision
|
| 1545 |
+
value: 94.23076923076923
|
| 1546 |
+
- type: cos_sim_recall
|
| 1547 |
+
value: 93.10000000000001
|
| 1548 |
+
- type: dot_accuracy
|
| 1549 |
+
value: 99.87524752475248
|
| 1550 |
+
- type: dot_accuracy_threshold
|
| 1551 |
+
value: 74.86587762832642
|
| 1552 |
+
- type: dot_ap
|
| 1553 |
+
value: 97.02222688043362
|
| 1554 |
+
- type: dot_f1
|
| 1555 |
+
value: 93.66197183098592
|
| 1556 |
+
- type: dot_f1_threshold
|
| 1557 |
+
value: 74.74223375320435
|
| 1558 |
+
- type: dot_precision
|
| 1559 |
+
value: 94.23076923076923
|
| 1560 |
+
- type: dot_recall
|
| 1561 |
+
value: 93.10000000000001
|
| 1562 |
+
- type: euclidean_accuracy
|
| 1563 |
+
value: 99.87524752475248
|
| 1564 |
+
- type: euclidean_accuracy_threshold
|
| 1565 |
+
value: 70.9000825881958
|
| 1566 |
+
- type: euclidean_ap
|
| 1567 |
+
value: 97.02222446606329
|
| 1568 |
+
- type: euclidean_f1
|
| 1569 |
+
value: 93.66197183098592
|
| 1570 |
+
- type: euclidean_f1_threshold
|
| 1571 |
+
value: 71.07426524162292
|
| 1572 |
+
- type: euclidean_precision
|
| 1573 |
+
value: 94.23076923076923
|
| 1574 |
+
- type: euclidean_recall
|
| 1575 |
+
value: 93.10000000000001
|
| 1576 |
+
- type: manhattan_accuracy
|
| 1577 |
+
value: 99.87623762376238
|
| 1578 |
+
- type: manhattan_accuracy_threshold
|
| 1579 |
+
value: 3588.5040283203125
|
| 1580 |
+
- type: manhattan_ap
|
| 1581 |
+
value: 97.09194643777883
|
| 1582 |
+
- type: manhattan_f1
|
| 1583 |
+
value: 93.7375745526839
|
| 1584 |
+
- type: manhattan_f1_threshold
|
| 1585 |
+
value: 3664.3760681152344
|
| 1586 |
+
- type: manhattan_precision
|
| 1587 |
+
value: 93.18181818181817
|
| 1588 |
+
- type: manhattan_recall
|
| 1589 |
+
value: 94.3
|
| 1590 |
+
- type: max_accuracy
|
| 1591 |
+
value: 99.87623762376238
|
| 1592 |
+
- type: max_ap
|
| 1593 |
+
value: 97.09194643777883
|
| 1594 |
+
- type: max_f1
|
| 1595 |
+
value: 93.7375745526839
|
| 1596 |
+
task:
|
| 1597 |
+
type: PairClassification
|
| 1598 |
+
- dataset:
|
| 1599 |
+
config: default
|
| 1600 |
+
name: MTEB StackExchangeClustering
|
| 1601 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
| 1602 |
+
split: test
|
| 1603 |
+
type: mteb/stackexchange-clustering
|
| 1604 |
+
metrics:
|
| 1605 |
+
- type: main_score
|
| 1606 |
+
value: 82.10134099988541
|
| 1607 |
+
- type: v_measure
|
| 1608 |
+
value: 82.10134099988541
|
| 1609 |
+
- type: v_measure_std
|
| 1610 |
+
value: 2.7926349897769533
|
| 1611 |
+
task:
|
| 1612 |
+
type: Clustering
|
| 1613 |
+
- dataset:
|
| 1614 |
+
config: default
|
| 1615 |
+
name: MTEB StackExchangeClusteringP2P
|
| 1616 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
| 1617 |
+
split: test
|
| 1618 |
+
type: mteb/stackexchange-clustering-p2p
|
| 1619 |
+
metrics:
|
| 1620 |
+
- type: main_score
|
| 1621 |
+
value: 48.357450742397404
|
| 1622 |
+
- type: v_measure
|
| 1623 |
+
value: 48.357450742397404
|
| 1624 |
+
- type: v_measure_std
|
| 1625 |
+
value: 1.520118876440547
|
| 1626 |
+
task:
|
| 1627 |
+
type: Clustering
|
| 1628 |
+
- dataset:
|
| 1629 |
+
config: default
|
| 1630 |
+
name: MTEB StackOverflowDupQuestions
|
| 1631 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
| 1632 |
+
split: test
|
| 1633 |
+
type: mteb/stackoverflowdupquestions-reranking
|
| 1634 |
+
metrics:
|
| 1635 |
+
- type: map
|
| 1636 |
+
value: 55.79277200802986
|
| 1637 |
+
- type: mrr
|
| 1638 |
+
value: 56.742517082590616
|
| 1639 |
+
- type: main_score
|
| 1640 |
+
value: 55.79277200802986
|
| 1641 |
+
task:
|
| 1642 |
+
type: Reranking
|
| 1643 |
+
- dataset:
|
| 1644 |
+
config: default
|
| 1645 |
+
name: MTEB SummEval
|
| 1646 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
| 1647 |
+
split: test
|
| 1648 |
+
type: mteb/summeval
|
| 1649 |
+
metrics:
|
| 1650 |
+
- type: cosine_spearman
|
| 1651 |
+
value: 30.701215774712693
|
| 1652 |
+
- type: cosine_pearson
|
| 1653 |
+
value: 31.26740037278488
|
| 1654 |
+
- type: dot_spearman
|
| 1655 |
+
value: 30.701215774712693
|
| 1656 |
+
- type: dot_pearson
|
| 1657 |
+
value: 31.267404144879997
|
| 1658 |
+
- type: main_score
|
| 1659 |
+
value: 30.701215774712693
|
| 1660 |
+
task:
|
| 1661 |
+
type: Summarization
|
| 1662 |
+
- dataset:
|
| 1663 |
+
config: default
|
| 1664 |
+
name: MTEB TRECCOVID
|
| 1665 |
+
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
|
| 1666 |
+
split: test
|
| 1667 |
+
type: mteb/trec-covid
|
| 1668 |
+
metrics:
|
| 1669 |
+
- type: map_at_1
|
| 1670 |
+
value: 0.23800000000000002
|
| 1671 |
+
- type: map_at_10
|
| 1672 |
+
value: 2.31
|
| 1673 |
+
- type: map_at_100
|
| 1674 |
+
value: 15.495000000000001
|
| 1675 |
+
- type: map_at_1000
|
| 1676 |
+
value: 38.829
|
| 1677 |
+
- type: map_at_3
|
| 1678 |
+
value: 0.72
|
| 1679 |
+
- type: map_at_5
|
| 1680 |
+
value: 1.185
|
| 1681 |
+
- type: mrr_at_1
|
| 1682 |
+
value: 0.0
|
| 1683 |
+
- type: mrr_at_10
|
| 1684 |
+
value: 0.0
|
| 1685 |
+
- type: mrr_at_100
|
| 1686 |
+
value: 0.0
|
| 1687 |
+
- type: mrr_at_1000
|
| 1688 |
+
value: 0.0
|
| 1689 |
+
- type: mrr_at_3
|
| 1690 |
+
value: 0.0
|
| 1691 |
+
- type: mrr_at_5
|
| 1692 |
+
value: 0.0
|
| 1693 |
+
- type: ndcg_at_1
|
| 1694 |
+
value: 91.0
|
| 1695 |
+
- type: ndcg_at_10
|
| 1696 |
+
value: 88.442
|
| 1697 |
+
- type: ndcg_at_100
|
| 1698 |
+
value: 71.39
|
| 1699 |
+
- type: ndcg_at_1000
|
| 1700 |
+
value: 64.153
|
| 1701 |
+
- type: ndcg_at_3
|
| 1702 |
+
value: 89.877
|
| 1703 |
+
- type: ndcg_at_5
|
| 1704 |
+
value: 89.562
|
| 1705 |
+
- type: precision_at_1
|
| 1706 |
+
value: 92.0
|
| 1707 |
+
- type: precision_at_10
|
| 1708 |
+
value: 92.60000000000001
|
| 1709 |
+
- type: precision_at_100
|
| 1710 |
+
value: 73.74000000000001
|
| 1711 |
+
- type: precision_at_1000
|
| 1712 |
+
value: 28.222
|
| 1713 |
+
- type: precision_at_3
|
| 1714 |
+
value: 94.0
|
| 1715 |
+
- type: precision_at_5
|
| 1716 |
+
value: 93.60000000000001
|
| 1717 |
+
- type: recall_at_1
|
| 1718 |
+
value: 0.23800000000000002
|
| 1719 |
+
- type: recall_at_10
|
| 1720 |
+
value: 2.428
|
| 1721 |
+
- type: recall_at_100
|
| 1722 |
+
value: 18.099999999999998
|
| 1723 |
+
- type: recall_at_1000
|
| 1724 |
+
value: 60.79599999999999
|
| 1725 |
+
- type: recall_at_3
|
| 1726 |
+
value: 0.749
|
| 1727 |
+
- type: recall_at_5
|
| 1728 |
+
value: 1.238
|
| 1729 |
+
- type: main_score
|
| 1730 |
+
value: 88.442
|
| 1731 |
+
task:
|
| 1732 |
+
type: Retrieval
|
| 1733 |
+
- dataset:
|
| 1734 |
+
config: default
|
| 1735 |
+
name: MTEB Touche2020
|
| 1736 |
+
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
|
| 1737 |
+
split: test
|
| 1738 |
+
type: mteb/touche2020
|
| 1739 |
+
metrics:
|
| 1740 |
+
- type: map_at_1
|
| 1741 |
+
value: 3.4939999999999998
|
| 1742 |
+
- type: map_at_10
|
| 1743 |
+
value: 12.531999999999998
|
| 1744 |
+
- type: map_at_100
|
| 1745 |
+
value: 19.147
|
| 1746 |
+
- type: map_at_1000
|
| 1747 |
+
value: 20.861
|
| 1748 |
+
- type: map_at_3
|
| 1749 |
+
value: 7.558
|
| 1750 |
+
- type: map_at_5
|
| 1751 |
+
value: 9.49
|
| 1752 |
+
- type: mrr_at_1
|
| 1753 |
+
value: 0.0
|
| 1754 |
+
- type: mrr_at_10
|
| 1755 |
+
value: 0.0
|
| 1756 |
+
- type: mrr_at_100
|
| 1757 |
+
value: 0.0
|
| 1758 |
+
- type: mrr_at_1000
|
| 1759 |
+
value: 0.0
|
| 1760 |
+
- type: mrr_at_3
|
| 1761 |
+
value: 0.0
|
| 1762 |
+
- type: mrr_at_5
|
| 1763 |
+
value: 0.0
|
| 1764 |
+
- type: ndcg_at_1
|
| 1765 |
+
value: 47.959
|
| 1766 |
+
- type: ndcg_at_10
|
| 1767 |
+
value: 31.781
|
| 1768 |
+
- type: ndcg_at_100
|
| 1769 |
+
value: 42.131
|
| 1770 |
+
- type: ndcg_at_1000
|
| 1771 |
+
value: 53.493
|
| 1772 |
+
- type: ndcg_at_3
|
| 1773 |
+
value: 39.204
|
| 1774 |
+
- type: ndcg_at_5
|
| 1775 |
+
value: 34.635
|
| 1776 |
+
- type: precision_at_1
|
| 1777 |
+
value: 48.980000000000004
|
| 1778 |
+
- type: precision_at_10
|
| 1779 |
+
value: 27.143
|
| 1780 |
+
- type: precision_at_100
|
| 1781 |
+
value: 8.224
|
| 1782 |
+
- type: precision_at_1000
|
| 1783 |
+
value: 1.584
|
| 1784 |
+
- type: precision_at_3
|
| 1785 |
+
value: 38.775999999999996
|
| 1786 |
+
- type: precision_at_5
|
| 1787 |
+
value: 33.061
|
| 1788 |
+
- type: recall_at_1
|
| 1789 |
+
value: 3.4939999999999998
|
| 1790 |
+
- type: recall_at_10
|
| 1791 |
+
value: 18.895
|
| 1792 |
+
- type: recall_at_100
|
| 1793 |
+
value: 50.192
|
| 1794 |
+
- type: recall_at_1000
|
| 1795 |
+
value: 85.167
|
| 1796 |
+
- type: recall_at_3
|
| 1797 |
+
value: 8.703
|
| 1798 |
+
- type: recall_at_5
|
| 1799 |
+
value: 11.824
|
| 1800 |
+
- type: main_score
|
| 1801 |
+
value: 31.781
|
| 1802 |
+
task:
|
| 1803 |
+
type: Retrieval
|
| 1804 |
+
- dataset:
|
| 1805 |
+
config: default
|
| 1806 |
+
name: MTEB ToxicConversationsClassification
|
| 1807 |
+
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
|
| 1808 |
+
split: test
|
| 1809 |
+
type: mteb/toxic_conversations_50k
|
| 1810 |
+
metrics:
|
| 1811 |
+
- type: accuracy
|
| 1812 |
+
value: 92.7402
|
| 1813 |
+
- type: accuracy_stderr
|
| 1814 |
+
value: 1.020764595781027
|
| 1815 |
+
- type: ap
|
| 1816 |
+
value: 44.38594756333084
|
| 1817 |
+
- type: ap_stderr
|
| 1818 |
+
value: 1.817150701258273
|
| 1819 |
+
- type: f1
|
| 1820 |
+
value: 79.95699280019547
|
| 1821 |
+
- type: f1_stderr
|
| 1822 |
+
value: 1.334582498702029
|
| 1823 |
+
- type: main_score
|
| 1824 |
+
value: 92.7402
|
| 1825 |
+
task:
|
| 1826 |
+
type: Classification
|
| 1827 |
+
- dataset:
|
| 1828 |
+
config: default
|
| 1829 |
+
name: MTEB TweetSentimentExtractionClassification
|
| 1830 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
| 1831 |
+
split: test
|
| 1832 |
+
type: mteb/tweet_sentiment_extraction
|
| 1833 |
+
metrics:
|
| 1834 |
+
- type: accuracy
|
| 1835 |
+
value: 80.86870401810978
|
| 1836 |
+
- type: accuracy_stderr
|
| 1837 |
+
value: 0.22688467782004712
|
| 1838 |
+
- type: f1
|
| 1839 |
+
value: 81.1829040745744
|
| 1840 |
+
- type: f1_stderr
|
| 1841 |
+
value: 0.19774920574849694
|
| 1842 |
+
- type: main_score
|
| 1843 |
+
value: 80.86870401810978
|
| 1844 |
+
task:
|
| 1845 |
+
type: Classification
|
| 1846 |
+
- dataset:
|
| 1847 |
+
config: default
|
| 1848 |
+
name: MTEB TwentyNewsgroupsClustering
|
| 1849 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
| 1850 |
+
split: test
|
| 1851 |
+
type: mteb/twentynewsgroups-clustering
|
| 1852 |
+
metrics:
|
| 1853 |
+
- type: main_score
|
| 1854 |
+
value: 64.82048869927482
|
| 1855 |
+
- type: v_measure
|
| 1856 |
+
value: 64.82048869927482
|
| 1857 |
+
- type: v_measure_std
|
| 1858 |
+
value: 0.9170394252450564
|
| 1859 |
+
task:
|
| 1860 |
+
type: Clustering
|
| 1861 |
+
- dataset:
|
| 1862 |
+
config: default
|
| 1863 |
+
name: MTEB TwitterSemEval2015
|
| 1864 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
| 1865 |
+
split: test
|
| 1866 |
+
type: mteb/twittersemeval2015-pairclassification
|
| 1867 |
+
metrics:
|
| 1868 |
+
- type: cos_sim_accuracy
|
| 1869 |
+
value: 88.44251057996067
|
| 1870 |
+
- type: cos_sim_accuracy_threshold
|
| 1871 |
+
value: 70.2150285243988
|
| 1872 |
+
- type: cos_sim_ap
|
| 1873 |
+
value: 81.11422351199913
|
| 1874 |
+
- type: cos_sim_f1
|
| 1875 |
+
value: 73.71062868615887
|
| 1876 |
+
- type: cos_sim_f1_threshold
|
| 1877 |
+
value: 66.507488489151
|
| 1878 |
+
- type: cos_sim_precision
|
| 1879 |
+
value: 70.2799712849964
|
| 1880 |
+
- type: cos_sim_recall
|
| 1881 |
+
value: 77.4934036939314
|
| 1882 |
+
- type: dot_accuracy
|
| 1883 |
+
value: 88.44251057996067
|
| 1884 |
+
- type: dot_accuracy_threshold
|
| 1885 |
+
value: 70.2150285243988
|
| 1886 |
+
- type: dot_ap
|
| 1887 |
+
value: 81.11420529068658
|
| 1888 |
+
- type: dot_f1
|
| 1889 |
+
value: 73.71062868615887
|
| 1890 |
+
- type: dot_f1_threshold
|
| 1891 |
+
value: 66.50749444961548
|
| 1892 |
+
- type: dot_precision
|
| 1893 |
+
value: 70.2799712849964
|
| 1894 |
+
- type: dot_recall
|
| 1895 |
+
value: 77.4934036939314
|
| 1896 |
+
- type: euclidean_accuracy
|
| 1897 |
+
value: 88.44251057996067
|
| 1898 |
+
- type: euclidean_accuracy_threshold
|
| 1899 |
+
value: 77.18156576156616
|
| 1900 |
+
- type: euclidean_ap
|
| 1901 |
+
value: 81.11422421732487
|
| 1902 |
+
- type: euclidean_f1
|
| 1903 |
+
value: 73.71062868615887
|
| 1904 |
+
- type: euclidean_f1_threshold
|
| 1905 |
+
value: 81.84436559677124
|
| 1906 |
+
- type: euclidean_precision
|
| 1907 |
+
value: 70.2799712849964
|
| 1908 |
+
- type: euclidean_recall
|
| 1909 |
+
value: 77.4934036939314
|
| 1910 |
+
- type: manhattan_accuracy
|
| 1911 |
+
value: 88.26369434344639
|
| 1912 |
+
- type: manhattan_accuracy_threshold
|
| 1913 |
+
value: 3837.067413330078
|
| 1914 |
+
- type: manhattan_ap
|
| 1915 |
+
value: 80.81442360477725
|
| 1916 |
+
- type: manhattan_f1
|
| 1917 |
+
value: 73.39883099117024
|
| 1918 |
+
- type: manhattan_f1_threshold
|
| 1919 |
+
value: 4098.833847045898
|
| 1920 |
+
- type: manhattan_precision
|
| 1921 |
+
value: 69.41896024464832
|
| 1922 |
+
- type: manhattan_recall
|
| 1923 |
+
value: 77.86279683377309
|
| 1924 |
+
- type: max_accuracy
|
| 1925 |
+
value: 88.44251057996067
|
| 1926 |
+
- type: max_ap
|
| 1927 |
+
value: 81.11422421732487
|
| 1928 |
+
- type: max_f1
|
| 1929 |
+
value: 73.71062868615887
|
| 1930 |
+
task:
|
| 1931 |
+
type: PairClassification
|
| 1932 |
+
- dataset:
|
| 1933 |
+
config: default
|
| 1934 |
+
name: MTEB TwitterURLCorpus
|
| 1935 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
| 1936 |
+
split: test
|
| 1937 |
+
type: mteb/twitterurlcorpus-pairclassification
|
| 1938 |
+
metrics:
|
| 1939 |
+
- type: cos_sim_accuracy
|
| 1940 |
+
value: 90.03182365040556
|
| 1941 |
+
- type: cos_sim_accuracy_threshold
|
| 1942 |
+
value: 64.46443796157837
|
| 1943 |
+
- type: cos_sim_ap
|
| 1944 |
+
value: 87.86649113691112
|
| 1945 |
+
- type: cos_sim_f1
|
| 1946 |
+
value: 80.45644844577821
|
| 1947 |
+
- type: cos_sim_f1_threshold
|
| 1948 |
+
value: 61.40774488449097
|
| 1949 |
+
- type: cos_sim_precision
|
| 1950 |
+
value: 77.54052702992216
|
| 1951 |
+
- type: cos_sim_recall
|
| 1952 |
+
value: 83.60024638127503
|
| 1953 |
+
- type: dot_accuracy
|
| 1954 |
+
value: 90.03182365040556
|
| 1955 |
+
- type: dot_accuracy_threshold
|
| 1956 |
+
value: 64.46444988250732
|
| 1957 |
+
- type: dot_ap
|
| 1958 |
+
value: 87.86649011954319
|
| 1959 |
+
- type: dot_f1
|
| 1960 |
+
value: 80.45644844577821
|
| 1961 |
+
- type: dot_f1_threshold
|
| 1962 |
+
value: 61.407750844955444
|
| 1963 |
+
- type: dot_precision
|
| 1964 |
+
value: 77.54052702992216
|
| 1965 |
+
- type: dot_recall
|
| 1966 |
+
value: 83.60024638127503
|
| 1967 |
+
- type: euclidean_accuracy
|
| 1968 |
+
value: 90.03182365040556
|
| 1969 |
+
- type: euclidean_accuracy_threshold
|
| 1970 |
+
value: 84.30368900299072
|
| 1971 |
+
- type: euclidean_ap
|
| 1972 |
+
value: 87.86649114275045
|
| 1973 |
+
- type: euclidean_f1
|
| 1974 |
+
value: 80.45644844577821
|
| 1975 |
+
- type: euclidean_f1_threshold
|
| 1976 |
+
value: 87.8547191619873
|
| 1977 |
+
- type: euclidean_precision
|
| 1978 |
+
value: 77.54052702992216
|
| 1979 |
+
- type: euclidean_recall
|
| 1980 |
+
value: 83.60024638127503
|
| 1981 |
+
- type: manhattan_accuracy
|
| 1982 |
+
value: 89.99883572010712
|
| 1983 |
+
- type: manhattan_accuracy_threshold
|
| 1984 |
+
value: 4206.838607788086
|
| 1985 |
+
- type: manhattan_ap
|
| 1986 |
+
value: 87.8600826607838
|
| 1987 |
+
- type: manhattan_f1
|
| 1988 |
+
value: 80.44054508120217
|
| 1989 |
+
- type: manhattan_f1_threshold
|
| 1990 |
+
value: 4372.755432128906
|
| 1991 |
+
- type: manhattan_precision
|
| 1992 |
+
value: 78.08219178082192
|
| 1993 |
+
- type: manhattan_recall
|
| 1994 |
+
value: 82.94579611949491
|
| 1995 |
+
- type: max_accuracy
|
| 1996 |
+
value: 90.03182365040556
|
| 1997 |
+
- type: max_ap
|
| 1998 |
+
value: 87.86649114275045
|
| 1999 |
+
- type: max_f1
|
| 2000 |
+
value: 80.45644844577821
|
| 2001 |
+
task:
|
| 2002 |
+
type: PairClassification
|
| 2003 |
+
language:
|
| 2004 |
+
- en
|
| 2005 |
+
license: cc-by-nc-4.0
|
| 2006 |
+
---
|
| 2007 |
+
## Introduction
|
| 2008 |
+
We present NV-Embed-v2, a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark ([MTEB benchmark](https://huggingface.co/spaces/mteb/leaderboard))(as of Aug 30, 2024) with a score of 72.31 across 56 text embedding tasks. It also holds the No. 1 in the retrieval sub-category (a score of 62.65 across 15 tasks) in the leaderboard, which is essential to the development of RAG technology.
|
| 2009 |
+
|
| 2010 |
+
NV-Embed-v2 presents several new designs, including having the LLM attend to latent vectors for better pooled embedding output, and demonstrating a two-staged instruction tuning method to enhance the accuracy of both retrieval and non-retrieval tasks. Additionally, NV-Embed-v2 incorporates a novel hard-negative mining methods that take into account the positive relevance score for better false negatives removal.
|
| 2011 |
+
|
| 2012 |
+
For more technical details, refer to our paper: [NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models](https://arxiv.org/pdf/2405.17428).
|
| 2013 |
+
|
| 2014 |
+
## Model Details
|
| 2015 |
+
- Base Decoder-only LLM: [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
| 2016 |
+
- Pooling Type: Latent-Attention
|
| 2017 |
+
- Embedding Dimension: 4096
|
| 2018 |
+
|
| 2019 |
+
## How to use
|
| 2020 |
+
|
| 2021 |
+
Here is an example of how to encode queries and passages using Huggingface-transformer and Sentence-transformer. Please find the required package version [here](https://huggingface.co/nvidia/NV-Embed-v2#2-required-packages).
|
| 2022 |
+
|
| 2023 |
+
### Usage (HuggingFace Transformers)
|
| 2024 |
+
|
| 2025 |
+
```python
|
| 2026 |
+
import torch
|
| 2027 |
+
import torch.nn.functional as F
|
| 2028 |
+
from transformers import AutoTokenizer, AutoModel
|
| 2029 |
+
|
| 2030 |
+
# Each query needs to be accompanied by an corresponding instruction describing the task.
|
| 2031 |
+
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}
|
| 2032 |
+
|
| 2033 |
+
query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: "
|
| 2034 |
+
queries = [
|
| 2035 |
+
'are judo throws allowed in wrestling?',
|
| 2036 |
+
'how to become a radiology technician in michigan?'
|
| 2037 |
+
]
|
| 2038 |
+
|
| 2039 |
+
# No instruction needed for retrieval passages
|
| 2040 |
+
passage_prefix = ""
|
| 2041 |
+
passages = [
|
| 2042 |
+
"Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.",
|
| 2043 |
+
"Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
|
| 2044 |
+
]
|
| 2045 |
+
|
| 2046 |
+
# load model with tokenizer
|
| 2047 |
+
model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True)
|
| 2048 |
+
|
| 2049 |
+
# get the embeddings
|
| 2050 |
+
max_length = 32768
|
| 2051 |
+
query_embeddings = model.encode(queries, instruction=query_prefix, max_length=max_length)
|
| 2052 |
+
passage_embeddings = model.encode(passages, instruction=passage_prefix, max_length=max_length)
|
| 2053 |
+
|
| 2054 |
+
# normalize embeddings
|
| 2055 |
+
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
|
| 2056 |
+
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)
|
| 2057 |
+
|
| 2058 |
+
# get the embeddings with DataLoader (spliting the datasets into multiple mini-batches)
|
| 2059 |
+
# batch_size=2
|
| 2060 |
+
# query_embeddings = model._do_encode(queries, batch_size=batch_size, instruction=query_prefix, max_length=max_length, num_workers=32, return_numpy=True)
|
| 2061 |
+
# passage_embeddings = model._do_encode(passages, batch_size=batch_size, instruction=passage_prefix, max_length=max_length, num_workers=32, return_numpy=True)
|
| 2062 |
+
|
| 2063 |
+
scores = (query_embeddings @ passage_embeddings.T) * 100
|
| 2064 |
+
print(scores.tolist())
|
| 2065 |
+
# [[87.42693328857422, 0.46283677220344543], [0.965264618396759, 86.03721618652344]]
|
| 2066 |
+
```
|
| 2067 |
+
|
| 2068 |
+
|
| 2069 |
+
### Usage (Sentence-Transformers)
|
| 2070 |
+
|
| 2071 |
+
```python
|
| 2072 |
+
import torch
|
| 2073 |
+
from sentence_transformers import SentenceTransformer
|
| 2074 |
+
|
| 2075 |
+
# Each query needs to be accompanied by an corresponding instruction describing the task.
|
| 2076 |
+
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}
|
| 2077 |
+
|
| 2078 |
+
query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: "
|
| 2079 |
+
queries = [
|
| 2080 |
+
'are judo throws allowed in wrestling?',
|
| 2081 |
+
'how to become a radiology technician in michigan?'
|
| 2082 |
+
]
|
| 2083 |
+
|
| 2084 |
+
# No instruction needed for retrieval passages
|
| 2085 |
+
passages = [
|
| 2086 |
+
"Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.",
|
| 2087 |
+
"Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
|
| 2088 |
+
]
|
| 2089 |
+
|
| 2090 |
+
# load model with tokenizer
|
| 2091 |
+
model = SentenceTransformer('nvidia/NV-Embed-v2', trust_remote_code=True)
|
| 2092 |
+
model.max_seq_length = 32768
|
| 2093 |
+
model.tokenizer.padding_side="right"
|
| 2094 |
+
|
| 2095 |
+
def add_eos(input_examples):
|
| 2096 |
+
input_examples = [input_example + model.tokenizer.eos_token for input_example in input_examples]
|
| 2097 |
+
return input_examples
|
| 2098 |
+
|
| 2099 |
+
# get the embeddings
|
| 2100 |
+
batch_size = 2
|
| 2101 |
+
query_embeddings = model.encode(add_eos(queries), batch_size=batch_size, prompt=query_prefix, normalize_embeddings=True)
|
| 2102 |
+
passage_embeddings = model.encode(add_eos(passages), batch_size=batch_size, normalize_embeddings=True)
|
| 2103 |
+
|
| 2104 |
+
scores = (query_embeddings @ passage_embeddings.T) * 100
|
| 2105 |
+
print(scores.tolist())
|
| 2106 |
+
```
|
| 2107 |
+
|
| 2108 |
+
## License
|
| 2109 |
+
This model should not be used for any commercial purpose. Refer the [license](https://spdx.org/licenses/CC-BY-NC-4.0) for the detailed terms.
|
| 2110 |
+
|
| 2111 |
+
For commercial purpose, we recommend you to use the models of [NeMo Retriever Microservices (NIMs)](https://build.nvidia.com/explore/retrieval).
|
| 2112 |
+
|
| 2113 |
+
|
| 2114 |
+
## Correspondence to
|
| 2115 |
+
Chankyu Lee ([email protected]), Wei Ping ([email protected])
|
| 2116 |
+
|
| 2117 |
+
|
| 2118 |
+
## Citation
|
| 2119 |
+
If you find this code useful in your research, please consider citing:
|
| 2120 |
+
|
| 2121 |
+
```bibtex
|
| 2122 |
+
@article{lee2024nv,
|
| 2123 |
+
title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models},
|
| 2124 |
+
author={Lee, Chankyu and Roy, Rajarshi and Xu, Mengyao and Raiman, Jonathan and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei},
|
| 2125 |
+
journal={arXiv preprint arXiv:2405.17428},
|
| 2126 |
+
year={2024}
|
| 2127 |
+
}
|
| 2128 |
+
```
|
| 2129 |
+
```bibtex
|
| 2130 |
+
@article{moreira2024nv,
|
| 2131 |
+
title={NV-Retriever: Improving text embedding models with effective hard-negative mining},
|
| 2132 |
+
author={Moreira, Gabriel de Souza P and Osmulski, Radek and Xu, Mengyao and Ak, Ronay and Schifferer, Benedikt and Oldridge, Even},
|
| 2133 |
+
journal={arXiv preprint arXiv:2407.15831},
|
| 2134 |
+
year={2024}
|
| 2135 |
+
}
|
| 2136 |
+
```
|
| 2137 |
+
|
| 2138 |
+
|
| 2139 |
+
## Troubleshooting
|
| 2140 |
+
|
| 2141 |
+
#### 1. Instruction template for MTEB benchmarks
|
| 2142 |
+
|
| 2143 |
+
For MTEB sub-tasks for retrieval, STS, summarization, please use the instruction prefix template in [instructions.json](https://huggingface.co/nvidia/NV-Embed-v2/blob/main/instructions.json). For classification, clustering and reranking, please use the instructions provided in Table. 7 in [NV-Embed paper](https://arxiv.org/pdf/2405.17428).
|
| 2144 |
+
|
| 2145 |
+
#### 2. Required Packages
|
| 2146 |
+
|
| 2147 |
+
If you have trouble, try installing the python packages as below
|
| 2148 |
+
```python
|
| 2149 |
+
pip uninstall -y transformer-engine
|
| 2150 |
+
pip install torch==2.2.0
|
| 2151 |
+
pip install transformers==4.42.4
|
| 2152 |
+
pip install flash-attn==2.2.0
|
| 2153 |
+
pip install sentence-transformers==2.7.0
|
| 2154 |
+
```
|
| 2155 |
+
|
| 2156 |
+
#### 3. How to enable Multi-GPU (Note, this is the case for HuggingFace Transformers)
|
| 2157 |
+
```python
|
| 2158 |
+
from transformers import AutoModel
|
| 2159 |
+
from torch.nn import DataParallel
|
| 2160 |
+
|
| 2161 |
+
embedding_model = AutoModel.from_pretrained("nvidia/NV-Embed-v2")
|
| 2162 |
+
for module_key, module in embedding_model._modules.items():
|
| 2163 |
+
embedding_model._modules[module_key] = DataParallel(module)
|
| 2164 |
+
```
|
| 2165 |
+
|
| 2166 |
+
#### 4. Fixing "nvidia/NV-Embed-v2 is not the path to a directory containing a file named config.json"
|
| 2167 |
+
|
| 2168 |
+
Switch to your local model path,and open config.json and change the value of **"_name_or_path"** and replace it with your local model path.
|
| 2169 |
+
|
| 2170 |
+
|
| 2171 |
+
#### 5. Access to model nvidia/NV-Embed-v2 is restricted. You must be authenticated to access it
|
| 2172 |
+
|
| 2173 |
+
Use your huggingface access [token](https://huggingface.co/settings/tokens) to execute *"huggingface-cli login"*.
|
| 2174 |
+
|
| 2175 |
+
#### 6. How to resolve slight mismatch in Sentence transformer results.
|
| 2176 |
+
|
| 2177 |
+
A slight mismatch in the Sentence Transformer implementation is caused by a discrepancy in the calculation of the instruction prefix length within the Sentence Transformer package.
|
| 2178 |
+
|
| 2179 |
+
To fix this issue, you need to build the Sentence Transformer package from source, making the necessary modification in this [line](https://github.com/UKPLab/sentence-transformers/blob/v2.7-release/sentence_transformers/SentenceTransformer.py#L353) as below.
|
| 2180 |
+
```python
|
| 2181 |
+
git clone https://github.com/UKPLab/sentence-transformers.git
|
| 2182 |
+
cd sentence-transformers
|
| 2183 |
+
git checkout v2.7-release
|
| 2184 |
+
# Modify L353 in SentenceTransformer.py to **'extra_features["prompt_length"] = tokenized_prompt["input_ids"].shape[-1]'**.
|
| 2185 |
+
pip install -e .
|
| 2186 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "nvidia/NV-Embed-v2",
|
| 3 |
+
"add_eos": true,
|
| 4 |
+
"add_pad_token": true,
|
| 5 |
+
"architectures": [
|
| 6 |
+
"NVEmbedModel"
|
| 7 |
+
],
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_nvembed.NVEmbedConfig",
|
| 10 |
+
"AutoModel": "modeling_nvembed.NVEmbedModel"
|
| 11 |
+
},
|
| 12 |
+
"hidden_size": 4096,
|
| 13 |
+
"is_mask_instruction": true,
|
| 14 |
+
"latent_attention_config": {
|
| 15 |
+
"model_type": "latent_attention"
|
| 16 |
+
},
|
| 17 |
+
"mask_type": "b",
|
| 18 |
+
"model_type": "nvembed",
|
| 19 |
+
"padding_side": "right",
|
| 20 |
+
"text_config": {
|
| 21 |
+
"_name_or_path": "nvidia/NV-Embed-v2",
|
| 22 |
+
"add_cross_attention": false,
|
| 23 |
+
"architectures": [
|
| 24 |
+
"MistralModel"
|
| 25 |
+
],
|
| 26 |
+
"attention_dropout": 0.0,
|
| 27 |
+
"bad_words_ids": null,
|
| 28 |
+
"begin_suppress_tokens": null,
|
| 29 |
+
"bos_token_id": 1,
|
| 30 |
+
"chunk_size_feed_forward": 0,
|
| 31 |
+
"cross_attention_hidden_size": null,
|
| 32 |
+
"decoder_start_token_id": null,
|
| 33 |
+
"diversity_penalty": 0.0,
|
| 34 |
+
"do_sample": false,
|
| 35 |
+
"early_stopping": false,
|
| 36 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 37 |
+
"eos_token_id": 2,
|
| 38 |
+
"exponential_decay_length_penalty": null,
|
| 39 |
+
"finetuning_task": null,
|
| 40 |
+
"forced_bos_token_id": null,
|
| 41 |
+
"forced_eos_token_id": null,
|
| 42 |
+
"hidden_act": "silu",
|
| 43 |
+
"hidden_size": 4096,
|
| 44 |
+
"id2label": {
|
| 45 |
+
"0": "LABEL_0",
|
| 46 |
+
"1": "LABEL_1"
|
| 47 |
+
},
|
| 48 |
+
"initializer_range": 0.02,
|
| 49 |
+
"intermediate_size": 14336,
|
| 50 |
+
"is_decoder": false,
|
| 51 |
+
"is_encoder_decoder": false,
|
| 52 |
+
"label2id": {
|
| 53 |
+
"LABEL_0": 0,
|
| 54 |
+
"LABEL_1": 1
|
| 55 |
+
},
|
| 56 |
+
"length_penalty": 1.0,
|
| 57 |
+
"max_length": 20,
|
| 58 |
+
"max_position_embeddings": 32768,
|
| 59 |
+
"min_length": 0,
|
| 60 |
+
"model_type": "bidir_mistral",
|
| 61 |
+
"no_repeat_ngram_size": 0,
|
| 62 |
+
"num_attention_heads": 32,
|
| 63 |
+
"num_beam_groups": 1,
|
| 64 |
+
"num_beams": 1,
|
| 65 |
+
"num_hidden_layers": 32,
|
| 66 |
+
"num_key_value_heads": 8,
|
| 67 |
+
"num_return_sequences": 1,
|
| 68 |
+
"output_attentions": false,
|
| 69 |
+
"output_hidden_states": false,
|
| 70 |
+
"output_scores": false,
|
| 71 |
+
"pad_token_id": null,
|
| 72 |
+
"prefix": null,
|
| 73 |
+
"problem_type": null,
|
| 74 |
+
"pruned_heads": {},
|
| 75 |
+
"remove_invalid_values": false,
|
| 76 |
+
"repetition_penalty": 1.0,
|
| 77 |
+
"return_dict": true,
|
| 78 |
+
"return_dict_in_generate": false,
|
| 79 |
+
"rms_norm_eps": 1e-05,
|
| 80 |
+
"rope_theta": 10000.0,
|
| 81 |
+
"sep_token_id": null,
|
| 82 |
+
"sliding_window": 4096,
|
| 83 |
+
"suppress_tokens": null,
|
| 84 |
+
"task_specific_params": null,
|
| 85 |
+
"temperature": 1.0,
|
| 86 |
+
"tf_legacy_loss": false,
|
| 87 |
+
"tie_encoder_decoder": false,
|
| 88 |
+
"tie_word_embeddings": false,
|
| 89 |
+
"tokenizer_class": null,
|
| 90 |
+
"top_k": 50,
|
| 91 |
+
"top_p": 1.0,
|
| 92 |
+
"torch_dtype": "float32",
|
| 93 |
+
"torchscript": false,
|
| 94 |
+
"typical_p": 1.0,
|
| 95 |
+
"use_bfloat16": false,
|
| 96 |
+
"use_cache": true,
|
| 97 |
+
"vocab_size": 32000
|
| 98 |
+
},
|
| 99 |
+
"torch_dtype": "float16",
|
| 100 |
+
"transformers_version": "4.42.4"
|
| 101 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.7.0",
|
| 4 |
+
"transformers": "4.37.2",
|
| 5 |
+
"pytorch": "2.2.0+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null
|
| 9 |
+
}
|
configuration_nvembed.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from typing import Literal
|
| 3 |
+
from transformers import AutoConfig
|
| 4 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 5 |
+
from transformers.models.auto import CONFIG_MAPPING
|
| 6 |
+
from transformers.models.mistral import MistralConfig
|
| 7 |
+
|
| 8 |
+
NVEMBED_TYPE = "nvembed"
|
| 9 |
+
LATENT_ATTENTION_TYPE = "latent_attention"
|
| 10 |
+
BIDIR_MISTRAL_TYPE = "bidir_mistral"
|
| 11 |
+
|
| 12 |
+
class NVEmbedConfig(PretrainedConfig):
|
| 13 |
+
model_type = "nvembed"
|
| 14 |
+
is_composition = False
|
| 15 |
+
|
| 16 |
+
def __init__(
|
| 17 |
+
self,
|
| 18 |
+
latent_attention_config=None,
|
| 19 |
+
text_config=None,
|
| 20 |
+
padding_side: Literal["right", "left"]="right",
|
| 21 |
+
add_pad_token: bool=True,
|
| 22 |
+
is_mask_instruction: bool = True,
|
| 23 |
+
add_eos: bool=True,
|
| 24 |
+
mask_type: str="b",
|
| 25 |
+
**kwargs,
|
| 26 |
+
):
|
| 27 |
+
if isinstance(latent_attention_config, dict):
|
| 28 |
+
latent_attention_config["model_type"] = (
|
| 29 |
+
latent_attention_config["model_type"] if "model_type" in latent_attention_config else LATENT_ATTENTION_TYPE
|
| 30 |
+
)
|
| 31 |
+
latent_attention_config = CONFIG_MAPPING[latent_attention_config["model_type"]](**latent_attention_config)
|
| 32 |
+
elif latent_attention_config is None:
|
| 33 |
+
latent_attention_config = CONFIG_MAPPING[LATENT_ATTENTION_TYPE]()
|
| 34 |
+
|
| 35 |
+
self.latent_attention_config = latent_attention_config
|
| 36 |
+
|
| 37 |
+
if isinstance(text_config, dict):
|
| 38 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
|
| 39 |
+
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
| 40 |
+
elif text_config is None:
|
| 41 |
+
text_config = None
|
| 42 |
+
|
| 43 |
+
self.text_config = text_config
|
| 44 |
+
self.padding_side = padding_side
|
| 45 |
+
self.is_mask_instruction = is_mask_instruction
|
| 46 |
+
self.add_pad_token = add_pad_token
|
| 47 |
+
self.add_eos = add_eos
|
| 48 |
+
self.mask_type = mask_type
|
| 49 |
+
if "hidden_size" in kwargs:
|
| 50 |
+
self.hidden_size = kwargs["hidden_size"]
|
| 51 |
+
else:
|
| 52 |
+
self.hidden_size = 4096
|
| 53 |
+
|
| 54 |
+
super().__init__(**kwargs)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class LatentAttentionConfig(PretrainedConfig):
|
| 58 |
+
model_type = LATENT_ATTENTION_TYPE
|
| 59 |
+
is_composition = False
|
| 60 |
+
_name_or_path = "latent_attention"
|
| 61 |
+
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
num_latents_value: int=512,
|
| 65 |
+
num_cross_heads: int=8,
|
| 66 |
+
output_normalize: bool=True,
|
| 67 |
+
hidden_dim: int=4096,
|
| 68 |
+
latent_dim: int=4096,
|
| 69 |
+
cross_dim_head: int=4096,
|
| 70 |
+
**kwargs,
|
| 71 |
+
):
|
| 72 |
+
self.num_latents_value = num_latents_value
|
| 73 |
+
self.num_cross_heads = num_cross_heads
|
| 74 |
+
self.output_normalize = output_normalize
|
| 75 |
+
self.hidden_dim = hidden_dim
|
| 76 |
+
self.latent_dim = latent_dim
|
| 77 |
+
self.cross_dim_head = cross_dim_head
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class BidirectionalMistralConfig(MistralConfig):
|
| 81 |
+
model_type = BIDIR_MISTRAL_TYPE
|
| 82 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 83 |
+
|
| 84 |
+
AutoConfig.register(NVEMBED_TYPE, NVEmbedConfig)
|
| 85 |
+
AutoConfig.register(LATENT_ATTENTION_TYPE, LatentAttentionConfig)
|
| 86 |
+
AutoConfig.register(BIDIR_MISTRAL_TYPE, BidirectionalMistralConfig)
|
| 87 |
+
|
| 88 |
+
NVEmbedConfig.register_for_auto_class()
|
| 89 |
+
LatentAttentionConfig.register_for_auto_class()
|
| 90 |
+
BidirectionalMistralConfig.register_for_auto_class()
|
instructions.json
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"ClimateFEVER":
|
| 3 |
+
{
|
| 4 |
+
"query": "Given a claim about climate change, retrieve documents that support or refute the claim",
|
| 5 |
+
"corpus": ""
|
| 6 |
+
},
|
| 7 |
+
"HotpotQA":
|
| 8 |
+
{
|
| 9 |
+
"query": "Given a multi-hop question, retrieve documents that can help answer the question",
|
| 10 |
+
"corpus": ""
|
| 11 |
+
},
|
| 12 |
+
"FEVER":
|
| 13 |
+
{
|
| 14 |
+
"query": "Given a claim, retrieve documents that support or refute the claim",
|
| 15 |
+
"corpus": ""
|
| 16 |
+
},
|
| 17 |
+
"MSMARCO":
|
| 18 |
+
{
|
| 19 |
+
"query": "Given a web search query, retrieve relevant passages that answer the query",
|
| 20 |
+
"corpus": ""
|
| 21 |
+
},
|
| 22 |
+
"DBPedia":
|
| 23 |
+
{
|
| 24 |
+
"query": "Given a query, retrieve relevant entity descriptions from DBPedia",
|
| 25 |
+
"corpus": ""
|
| 26 |
+
},
|
| 27 |
+
"NQ":
|
| 28 |
+
{
|
| 29 |
+
"query": "Given a question, retrieve passages that answer the question",
|
| 30 |
+
"corpus": ""
|
| 31 |
+
},
|
| 32 |
+
"QuoraRetrieval":
|
| 33 |
+
{
|
| 34 |
+
"query": "Given a question, retrieve questions that are semantically equivalent to the given question",
|
| 35 |
+
"corpus": "Given a question, retrieve questions that are semantically equivalent to the given question"
|
| 36 |
+
},
|
| 37 |
+
"SCIDOCS":
|
| 38 |
+
{
|
| 39 |
+
"query": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper",
|
| 40 |
+
"corpus": ""
|
| 41 |
+
},
|
| 42 |
+
"TRECCOVID":
|
| 43 |
+
{
|
| 44 |
+
"query": "Given a query on COVID-19, retrieve documents that answer the query",
|
| 45 |
+
"corpus": ""
|
| 46 |
+
},
|
| 47 |
+
"Touche2020":
|
| 48 |
+
{
|
| 49 |
+
"query": "Given a question, retrieve passages that answer the question",
|
| 50 |
+
"corpus": ""
|
| 51 |
+
},
|
| 52 |
+
"SciFact":
|
| 53 |
+
{
|
| 54 |
+
"query": "Given a scientific claim, retrieve documents that support or refute the claim",
|
| 55 |
+
"corpus": ""
|
| 56 |
+
},
|
| 57 |
+
"NFCorpus":
|
| 58 |
+
{
|
| 59 |
+
"query": "Given a question, retrieve relevant documents that answer the question",
|
| 60 |
+
"corpus": ""
|
| 61 |
+
},
|
| 62 |
+
"ArguAna":
|
| 63 |
+
{
|
| 64 |
+
"query": "Given a claim, retrieve documents that support or refute the claim",
|
| 65 |
+
"corpus": ""
|
| 66 |
+
},
|
| 67 |
+
"FiQA2018":
|
| 68 |
+
{
|
| 69 |
+
"query": "Given a financial question, retrieve relevant passages that answer the query",
|
| 70 |
+
"corpus": ""
|
| 71 |
+
},
|
| 72 |
+
"STS":
|
| 73 |
+
{
|
| 74 |
+
"text": "Retrieve semantically similar text"
|
| 75 |
+
},
|
| 76 |
+
"SUMM":
|
| 77 |
+
{
|
| 78 |
+
"text": "Given a news summary, retrieve other semantically similar summaries"
|
| 79 |
+
}
|
| 80 |
+
}
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ce5651268058d961eaeabd4f65a5cb5d003ac7e0e34b7095658b5d5a4802f6a
|
| 3 |
+
size 4997761248
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bbd7e85b57afbc74fab67e50a572590ce57dde8b5fa76fe7527c42189074d57d
|
| 3 |
+
size 4915917048
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87c90f033107075c9531ed8163d4b087ce77e63596c8510821da15a4d892a85c
|
| 3 |
+
size 4999820296
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:44ff251c6b33ed89101915eb82a92575fd7d7daf9db953205f3bb4b982c4c3f5
|
| 3 |
+
size 788571960
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 15702032384
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"embedding_model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 7 |
+
"embedding_model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"embedding_model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"embedding_model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"embedding_model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"embedding_model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"embedding_model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"embedding_model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"embedding_model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"embedding_model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"embedding_model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"embedding_model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"embedding_model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 19 |
+
"embedding_model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"embedding_model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"embedding_model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"embedding_model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"embedding_model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"embedding_model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"embedding_model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 26 |
+
"embedding_model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 27 |
+
"embedding_model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 28 |
+
"embedding_model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 29 |
+
"embedding_model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 30 |
+
"embedding_model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 31 |
+
"embedding_model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 32 |
+
"embedding_model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"embedding_model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"embedding_model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"embedding_model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"embedding_model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"embedding_model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"embedding_model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"embedding_model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"embedding_model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 41 |
+
"embedding_model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"embedding_model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"embedding_model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"embedding_model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"embedding_model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"embedding_model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"embedding_model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"embedding_model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"embedding_model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 50 |
+
"embedding_model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"embedding_model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"embedding_model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"embedding_model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"embedding_model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"embedding_model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"embedding_model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"embedding_model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"embedding_model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"embedding_model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"embedding_model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"embedding_model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"embedding_model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"embedding_model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"embedding_model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"embedding_model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"embedding_model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 67 |
+
"embedding_model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"embedding_model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"embedding_model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"embedding_model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"embedding_model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"embedding_model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"embedding_model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"embedding_model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"embedding_model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"embedding_model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"embedding_model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"embedding_model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"embedding_model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"embedding_model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"embedding_model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"embedding_model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"embedding_model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"embedding_model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"embedding_model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 86 |
+
"embedding_model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"embedding_model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"embedding_model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 89 |
+
"embedding_model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"embedding_model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 91 |
+
"embedding_model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"embedding_model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"embedding_model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"embedding_model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"embedding_model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"embedding_model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"embedding_model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 98 |
+
"embedding_model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 99 |
+
"embedding_model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"embedding_model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 101 |
+
"embedding_model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 102 |
+
"embedding_model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 103 |
+
"embedding_model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"embedding_model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"embedding_model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"embedding_model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 107 |
+
"embedding_model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 108 |
+
"embedding_model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 109 |
+
"embedding_model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 110 |
+
"embedding_model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 111 |
+
"embedding_model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 112 |
+
"embedding_model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 113 |
+
"embedding_model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 114 |
+
"embedding_model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 115 |
+
"embedding_model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 116 |
+
"embedding_model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 117 |
+
"embedding_model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 118 |
+
"embedding_model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 119 |
+
"embedding_model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 120 |
+
"embedding_model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 121 |
+
"embedding_model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 122 |
+
"embedding_model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 123 |
+
"embedding_model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 124 |
+
"embedding_model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 125 |
+
"embedding_model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 126 |
+
"embedding_model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 127 |
+
"embedding_model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 128 |
+
"embedding_model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"embedding_model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"embedding_model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 131 |
+
"embedding_model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 132 |
+
"embedding_model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"embedding_model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 134 |
+
"embedding_model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 135 |
+
"embedding_model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"embedding_model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 137 |
+
"embedding_model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 138 |
+
"embedding_model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 139 |
+
"embedding_model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"embedding_model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"embedding_model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"embedding_model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"embedding_model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"embedding_model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"embedding_model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 146 |
+
"embedding_model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"embedding_model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"embedding_model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 149 |
+
"embedding_model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"embedding_model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 151 |
+
"embedding_model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"embedding_model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 153 |
+
"embedding_model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 154 |
+
"embedding_model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 155 |
+
"embedding_model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 156 |
+
"embedding_model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 157 |
+
"embedding_model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 158 |
+
"embedding_model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 159 |
+
"embedding_model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 160 |
+
"embedding_model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 161 |
+
"embedding_model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 162 |
+
"embedding_model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 163 |
+
"embedding_model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 164 |
+
"embedding_model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"embedding_model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"embedding_model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"embedding_model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"embedding_model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"embedding_model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 170 |
+
"embedding_model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"embedding_model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"embedding_model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 173 |
+
"embedding_model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"embedding_model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 175 |
+
"embedding_model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"embedding_model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"embedding_model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"embedding_model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"embedding_model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"embedding_model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"embedding_model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 182 |
+
"embedding_model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"embedding_model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"embedding_model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 185 |
+
"embedding_model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"embedding_model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 187 |
+
"embedding_model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"embedding_model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"embedding_model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"embedding_model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"embedding_model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"embedding_model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"embedding_model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"embedding_model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"embedding_model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"embedding_model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 197 |
+
"embedding_model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"embedding_model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 199 |
+
"embedding_model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"embedding_model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"embedding_model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"embedding_model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"embedding_model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"embedding_model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"embedding_model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 206 |
+
"embedding_model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"embedding_model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"embedding_model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 209 |
+
"embedding_model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"embedding_model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 211 |
+
"embedding_model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"embedding_model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"embedding_model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"embedding_model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 215 |
+
"embedding_model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 216 |
+
"embedding_model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 217 |
+
"embedding_model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 218 |
+
"embedding_model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 219 |
+
"embedding_model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 220 |
+
"embedding_model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 221 |
+
"embedding_model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 222 |
+
"embedding_model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 223 |
+
"embedding_model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 224 |
+
"embedding_model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 225 |
+
"embedding_model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 226 |
+
"embedding_model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 227 |
+
"embedding_model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 228 |
+
"embedding_model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"embedding_model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 230 |
+
"embedding_model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"embedding_model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"embedding_model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 233 |
+
"embedding_model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 234 |
+
"embedding_model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 235 |
+
"embedding_model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 236 |
+
"embedding_model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 237 |
+
"embedding_model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 238 |
+
"embedding_model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 239 |
+
"embedding_model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 240 |
+
"embedding_model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 241 |
+
"embedding_model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 242 |
+
"embedding_model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 243 |
+
"embedding_model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 244 |
+
"embedding_model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 245 |
+
"embedding_model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 246 |
+
"embedding_model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 247 |
+
"embedding_model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 248 |
+
"embedding_model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 249 |
+
"embedding_model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 250 |
+
"embedding_model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 251 |
+
"embedding_model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 252 |
+
"embedding_model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 253 |
+
"embedding_model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 254 |
+
"embedding_model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 255 |
+
"embedding_model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 256 |
+
"embedding_model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 257 |
+
"embedding_model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 258 |
+
"embedding_model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 259 |
+
"embedding_model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 260 |
+
"embedding_model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"embedding_model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"embedding_model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"embedding_model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"embedding_model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"embedding_model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 266 |
+
"embedding_model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"embedding_model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"embedding_model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 269 |
+
"embedding_model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 270 |
+
"embedding_model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 271 |
+
"embedding_model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 272 |
+
"embedding_model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 273 |
+
"embedding_model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"embedding_model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"embedding_model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"embedding_model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"embedding_model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 278 |
+
"embedding_model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 279 |
+
"embedding_model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 280 |
+
"embedding_model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 281 |
+
"embedding_model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 282 |
+
"embedding_model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 283 |
+
"embedding_model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 284 |
+
"embedding_model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 285 |
+
"embedding_model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 286 |
+
"embedding_model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 287 |
+
"embedding_model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 288 |
+
"embedding_model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 289 |
+
"embedding_model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 290 |
+
"embedding_model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 291 |
+
"embedding_model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 292 |
+
"embedding_model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 293 |
+
"embedding_model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 294 |
+
"embedding_model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 295 |
+
"embedding_model.norm.weight": "model-00004-of-00004.safetensors",
|
| 296 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_kv.weight": "model-00001-of-00004.safetensors",
|
| 297 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_out.weight": "model-00001-of-00004.safetensors",
|
| 298 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_q.weight": "model-00001-of-00004.safetensors",
|
| 299 |
+
"latent_attention_model.cross_attend_blocks.0.norm.bias": "model-00001-of-00004.safetensors",
|
| 300 |
+
"latent_attention_model.cross_attend_blocks.0.norm.weight": "model-00001-of-00004.safetensors",
|
| 301 |
+
"latent_attention_model.cross_attend_blocks.0.norm_context.bias": "model-00001-of-00004.safetensors",
|
| 302 |
+
"latent_attention_model.cross_attend_blocks.0.norm_context.weight": "model-00001-of-00004.safetensors",
|
| 303 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.0.bias": "model-00001-of-00004.safetensors",
|
| 304 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.0.weight": "model-00001-of-00004.safetensors",
|
| 305 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.2.bias": "model-00001-of-00004.safetensors",
|
| 306 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.2.weight": "model-00001-of-00004.safetensors",
|
| 307 |
+
"latent_attention_model.cross_attend_blocks.1.norm.bias": "model-00001-of-00004.safetensors",
|
| 308 |
+
"latent_attention_model.cross_attend_blocks.1.norm.weight": "model-00001-of-00004.safetensors",
|
| 309 |
+
"latent_attention_model.latents": "model-00001-of-00004.safetensors"
|
| 310 |
+
}
|
| 311 |
+
}
|
modeling_nvembed.py
ADDED
|
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Union, Dict, Mapping, Optional, Tuple, TypedDict
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import numpy as np
|
| 6 |
+
from functools import partial
|
| 7 |
+
from contextlib import nullcontext
|
| 8 |
+
from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
|
| 9 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 10 |
+
from transformers.models.auto import AutoTokenizer
|
| 11 |
+
from transformers.models.mistral.modeling_mistral import MISTRAL_INPUTS_DOCSTRING
|
| 12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
| 13 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
|
| 14 |
+
from transformers import MistralModel, MistralConfig
|
| 15 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 16 |
+
from transformers.utils import (
|
| 17 |
+
add_start_docstrings_to_model_forward,
|
| 18 |
+
logging,
|
| 19 |
+
)
|
| 20 |
+
from einops import rearrange, repeat
|
| 21 |
+
from tqdm.auto import tqdm
|
| 22 |
+
from datasets import Dataset
|
| 23 |
+
from torch.utils.data import DataLoader
|
| 24 |
+
from .configuration_nvembed import NVEmbedConfig, LatentAttentionConfig, BidirectionalMistralConfig
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
class NVEmbedFeatures(TypedDict):
|
| 29 |
+
input_dict: torch.Tensor
|
| 30 |
+
attention_mask: torch.Tensor
|
| 31 |
+
pool_mask: torch.Tensor
|
| 32 |
+
|
| 33 |
+
class BidirectionalMistralModel(MistralModel):
|
| 34 |
+
config_class = BidirectionalMistralConfig
|
| 35 |
+
|
| 36 |
+
def __init__(self, config: MistralConfig):
|
| 37 |
+
super().__init__(config)
|
| 38 |
+
for layer in self.layers:
|
| 39 |
+
layer.self_attn.is_causal = False
|
| 40 |
+
self._attn_implementation = "eager"
|
| 41 |
+
|
| 42 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
| 43 |
+
def forward(
|
| 44 |
+
self,
|
| 45 |
+
input_ids: torch.LongTensor = None,
|
| 46 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 47 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 48 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 49 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 50 |
+
use_cache: Optional[bool] = None,
|
| 51 |
+
output_attentions: Optional[bool] = None,
|
| 52 |
+
output_hidden_states: Optional[bool] = None,
|
| 53 |
+
return_dict: Optional[bool] = None,
|
| 54 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 55 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 56 |
+
output_hidden_states = (
|
| 57 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 58 |
+
)
|
| 59 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 60 |
+
|
| 61 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 62 |
+
|
| 63 |
+
# retrieve input_ids and inputs_embeds
|
| 64 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 65 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 66 |
+
elif input_ids is not None:
|
| 67 |
+
batch_size, seq_length = input_ids.shape
|
| 68 |
+
elif inputs_embeds is not None:
|
| 69 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 70 |
+
else:
|
| 71 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 72 |
+
|
| 73 |
+
if self.gradient_checkpointing and self.training:
|
| 74 |
+
if use_cache:
|
| 75 |
+
logger.warning_once(
|
| 76 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 77 |
+
)
|
| 78 |
+
use_cache = False
|
| 79 |
+
|
| 80 |
+
past_key_values_length = 0
|
| 81 |
+
|
| 82 |
+
if use_cache:
|
| 83 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
| 84 |
+
if use_legacy_cache:
|
| 85 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 86 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
| 87 |
+
|
| 88 |
+
if position_ids is None:
|
| 89 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 90 |
+
position_ids = torch.arange(
|
| 91 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 92 |
+
)
|
| 93 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 94 |
+
else:
|
| 95 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 96 |
+
|
| 97 |
+
if inputs_embeds is None:
|
| 98 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 99 |
+
|
| 100 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
| 101 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
| 102 |
+
if is_padding_right:
|
| 103 |
+
raise ValueError(
|
| 104 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 105 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
| 106 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
if self._attn_implementation == "flash_attention_2":
|
| 110 |
+
# 2d mask is passed through the layers
|
| 111 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 112 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
| 113 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
| 114 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
| 115 |
+
attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
| 116 |
+
attention_mask, inputs_embeds.dtype
|
| 117 |
+
)
|
| 118 |
+
else:
|
| 119 |
+
# 4d mask is passed through the layers
|
| 120 |
+
attention_mask = _prepare_4d_attention_mask(
|
| 121 |
+
attention_mask, inputs_embeds.dtype,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
hidden_states = inputs_embeds
|
| 125 |
+
|
| 126 |
+
# decoder layers
|
| 127 |
+
all_hidden_states = () if output_hidden_states else None
|
| 128 |
+
all_self_attns = () if output_attentions else None
|
| 129 |
+
next_decoder_cache = None
|
| 130 |
+
|
| 131 |
+
for decoder_layer in self.layers:
|
| 132 |
+
if output_hidden_states:
|
| 133 |
+
all_hidden_states += (hidden_states,)
|
| 134 |
+
|
| 135 |
+
if self.gradient_checkpointing and self.training:
|
| 136 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 137 |
+
decoder_layer.__call__,
|
| 138 |
+
hidden_states,
|
| 139 |
+
attention_mask,
|
| 140 |
+
position_ids,
|
| 141 |
+
past_key_values,
|
| 142 |
+
output_attentions,
|
| 143 |
+
use_cache,
|
| 144 |
+
)
|
| 145 |
+
else:
|
| 146 |
+
layer_outputs = decoder_layer(
|
| 147 |
+
hidden_states,
|
| 148 |
+
attention_mask=attention_mask,
|
| 149 |
+
position_ids=position_ids,
|
| 150 |
+
past_key_value=past_key_values,
|
| 151 |
+
output_attentions=output_attentions,
|
| 152 |
+
use_cache=use_cache,
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
hidden_states = layer_outputs[0]
|
| 156 |
+
|
| 157 |
+
if use_cache:
|
| 158 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 159 |
+
|
| 160 |
+
if output_attentions:
|
| 161 |
+
all_self_attns += (layer_outputs[1],)
|
| 162 |
+
|
| 163 |
+
hidden_states = self.norm(hidden_states)
|
| 164 |
+
|
| 165 |
+
# add hidden states from the last decoder layer
|
| 166 |
+
if output_hidden_states:
|
| 167 |
+
all_hidden_states += (hidden_states,)
|
| 168 |
+
|
| 169 |
+
next_cache = None
|
| 170 |
+
if use_cache:
|
| 171 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
| 172 |
+
|
| 173 |
+
if not return_dict:
|
| 174 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 175 |
+
return BaseModelOutputWithPast(
|
| 176 |
+
last_hidden_state=hidden_states,
|
| 177 |
+
past_key_values=next_cache,
|
| 178 |
+
hidden_states=all_hidden_states,
|
| 179 |
+
attentions=all_self_attns,
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
def _move_to_device(maybe_tensor, device: torch.device):
|
| 183 |
+
if torch.is_tensor(maybe_tensor):
|
| 184 |
+
return maybe_tensor.to(device, non_blocking=device.type == "cuda")
|
| 185 |
+
elif isinstance(maybe_tensor, dict):
|
| 186 |
+
return {key: _move_to_device(value, device) for key, value in maybe_tensor.items()}
|
| 187 |
+
elif isinstance(maybe_tensor, list):
|
| 188 |
+
return [_move_to_device(x, device) for x in maybe_tensor]
|
| 189 |
+
elif isinstance(maybe_tensor, tuple):
|
| 190 |
+
return tuple([_move_to_device(x, device) for x in maybe_tensor])
|
| 191 |
+
elif isinstance(maybe_tensor, Mapping):
|
| 192 |
+
return type(maybe_tensor)({k: _move_to_device(v, device) for k, v in maybe_tensor.items()})
|
| 193 |
+
else:
|
| 194 |
+
return maybe_tensor
|
| 195 |
+
|
| 196 |
+
def move_to_device(sample, device: torch.device):
|
| 197 |
+
if device.type == "cpu":
|
| 198 |
+
return sample
|
| 199 |
+
|
| 200 |
+
if len(sample) == 0:
|
| 201 |
+
return {}
|
| 202 |
+
return _move_to_device(sample, device)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def input_transform_func(
|
| 206 |
+
tokenizer: PreTrainedTokenizerFast,
|
| 207 |
+
examples: Dict[str, List],
|
| 208 |
+
always_add_eos: bool,
|
| 209 |
+
max_length: int,
|
| 210 |
+
instruction: str,
|
| 211 |
+
) -> BatchEncoding:
|
| 212 |
+
if always_add_eos:
|
| 213 |
+
examples['input_texts'] = [instruction + input_example + tokenizer.eos_token for input_example in examples['input_texts']]
|
| 214 |
+
batch_dict = tokenizer(
|
| 215 |
+
examples['input_texts'],
|
| 216 |
+
max_length=max_length,
|
| 217 |
+
padding=True,
|
| 218 |
+
return_token_type_ids=False,
|
| 219 |
+
return_tensors="pt",
|
| 220 |
+
truncation=True)
|
| 221 |
+
return batch_dict
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class PreNorm(torch.nn.Module):
|
| 225 |
+
def __init__(self, dim, fn, context_dim = None):
|
| 226 |
+
super().__init__()
|
| 227 |
+
self.fn = fn
|
| 228 |
+
self.norm = torch.nn.LayerNorm(dim)
|
| 229 |
+
self.norm_context = torch.nn.LayerNorm(context_dim) if exists(context_dim) else None
|
| 230 |
+
|
| 231 |
+
def forward(self, x, **kwargs):
|
| 232 |
+
x = self.norm(x)
|
| 233 |
+
if exists(self.norm_context):
|
| 234 |
+
context = kwargs['context']
|
| 235 |
+
normed_context = self.norm_context(context)
|
| 236 |
+
kwargs.update(context = normed_context)
|
| 237 |
+
return self.fn(x, **kwargs)
|
| 238 |
+
|
| 239 |
+
class GEGLU(torch.nn.Module):
|
| 240 |
+
def forward(self, x):
|
| 241 |
+
x, gates = x.chunk(2, dim = -1)
|
| 242 |
+
return x * torch.nn.functional.gelu(gates)
|
| 243 |
+
|
| 244 |
+
class FeedForward(torch.nn.Module):
|
| 245 |
+
def __init__(self, dim, mult = 4):
|
| 246 |
+
super().__init__()
|
| 247 |
+
self.net = torch.nn.Sequential(torch.nn.Linear(dim, dim * mult * 2),
|
| 248 |
+
GEGLU(),
|
| 249 |
+
torch.nn.Linear(dim * mult, dim))
|
| 250 |
+
|
| 251 |
+
def forward(self, x):
|
| 252 |
+
return self.net(x)
|
| 253 |
+
|
| 254 |
+
def exists(val):
|
| 255 |
+
return val is not None
|
| 256 |
+
|
| 257 |
+
def default(val, d):
|
| 258 |
+
return val if exists(val) else d
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class Attention(torch.nn.Module):
|
| 262 |
+
def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64):
|
| 263 |
+
super().__init__()
|
| 264 |
+
inner_dim = dim_head * heads
|
| 265 |
+
context_dim = default(context_dim, query_dim)
|
| 266 |
+
self.scale = dim_head ** -0.5
|
| 267 |
+
self.heads = heads
|
| 268 |
+
|
| 269 |
+
self.to_q = torch.nn.Linear(query_dim, inner_dim, bias = False)
|
| 270 |
+
self.to_kv = torch.nn.Linear(context_dim, inner_dim * 2, bias = False)
|
| 271 |
+
self.to_out = torch.nn.Linear(inner_dim, query_dim, bias = False)
|
| 272 |
+
|
| 273 |
+
def forward(self, x, context = None, mask = None):
|
| 274 |
+
h = self.heads
|
| 275 |
+
q = self.to_q(x)
|
| 276 |
+
context = default(context, x)
|
| 277 |
+
k, v = self.to_kv(context).chunk(2, dim = -1)
|
| 278 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
|
| 279 |
+
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_mem_efficient=True):
|
| 280 |
+
out = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
| 281 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
|
| 282 |
+
return self.to_out(out)
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
class LatentAttentionModel(PreTrainedModel):
|
| 286 |
+
config_class = LatentAttentionConfig
|
| 287 |
+
|
| 288 |
+
def __init__(self, config: LatentAttentionConfig):
|
| 289 |
+
super().__init__(config)
|
| 290 |
+
## cross-attention block
|
| 291 |
+
num_latents, latent_dim, cross_heads, cross_dim_head = config.num_latents_value, config.latent_dim, config.num_cross_heads, config.cross_dim_head
|
| 292 |
+
dim = config.hidden_dim
|
| 293 |
+
# init latent_attention and latents
|
| 294 |
+
self.cross_attend_blocks = torch.nn.ModuleList([
|
| 295 |
+
PreNorm(latent_dim, Attention(latent_dim, dim, heads = cross_heads, dim_head = cross_dim_head),
|
| 296 |
+
context_dim = dim),
|
| 297 |
+
PreNorm(latent_dim, FeedForward(latent_dim)),
|
| 298 |
+
])
|
| 299 |
+
self.output_normalize = config.output_normalize
|
| 300 |
+
self.register_parameter("latents", torch.nn.Parameter(torch.randn(num_latents, latent_dim)))
|
| 301 |
+
|
| 302 |
+
def forward(self, hiddens, attention_mask: torch.Tensor=None):
|
| 303 |
+
## cross-attention block
|
| 304 |
+
cross_attn, cross_ff = self.cross_attend_blocks
|
| 305 |
+
b, *_, device = *hiddens.shape, hiddens.device
|
| 306 |
+
x = repeat(self.latents, 'n d -> b n d', b = b)
|
| 307 |
+
hiddens = cross_attn(hiddens, context = x, mask = None) + hiddens
|
| 308 |
+
hiddens = cross_ff(hiddens) + hiddens
|
| 309 |
+
if attention_mask !=None:
|
| 310 |
+
s = torch.sum(hiddens * attention_mask.unsqueeze(-1).float(), dim=1)
|
| 311 |
+
d = attention_mask.sum(dim=1, keepdim=True).float()
|
| 312 |
+
hiddens = s / d
|
| 313 |
+
if self.output_normalize:
|
| 314 |
+
hiddens = torch.nn.functional.normalize(hiddens, p=2, dim=-1)
|
| 315 |
+
return hiddens
|
| 316 |
+
|
| 317 |
+
class NVEmbedModel(PreTrainedModel):
|
| 318 |
+
config_class = NVEmbedConfig
|
| 319 |
+
_no_split_modules = ["MistralDecoderLayer", "LatentAttentionModel"]
|
| 320 |
+
|
| 321 |
+
def __init__(self, config: NVEmbedConfig):
|
| 322 |
+
super().__init__(config)
|
| 323 |
+
self.latent_attention_model = AutoModel.from_config(config.latent_attention_config)
|
| 324 |
+
self.embedding_model = AutoModel.from_config(
|
| 325 |
+
config.text_config,
|
| 326 |
+
) if config.text_config is not None else None
|
| 327 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.text_config._name_or_path) if config.text_config is not None else None
|
| 328 |
+
self.padding_side = config.padding_side
|
| 329 |
+
self.is_mask_instruction = config.is_mask_instruction
|
| 330 |
+
self.add_eos = config.add_eos
|
| 331 |
+
self.mask_type = config.mask_type
|
| 332 |
+
if config.add_pad_token and self.tokenizer is not None:
|
| 333 |
+
self.add_pad_token()
|
| 334 |
+
|
| 335 |
+
def add_pad_token(self):
|
| 336 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 337 |
+
self.tokenizer.padding_side = self.padding_side
|
| 338 |
+
|
| 339 |
+
def prepare_kwargs_from_batch(self, batch_dict: dict, instruction_lens: int, device: torch.device):
|
| 340 |
+
batch_dict = move_to_device(batch_dict, device)
|
| 341 |
+
attention_mask = batch_dict['attention_mask'].clone() if 'attention_mask' in batch_dict else None
|
| 342 |
+
if (attention_mask is not None and
|
| 343 |
+
self.padding_side == "right" and
|
| 344 |
+
self.is_mask_instruction == True and
|
| 345 |
+
instruction_lens > 0):
|
| 346 |
+
# Mask out the instruction tokens for mean-pooling
|
| 347 |
+
attention_mask[:, :instruction_lens] = 0
|
| 348 |
+
features: NVEmbedFeatures = {
|
| 349 |
+
'input_ids': torch.tensor(batch_dict.get('input_ids').to(batch_dict.get('input_ids')).long()),
|
| 350 |
+
'attention_mask': batch_dict['attention_mask'],
|
| 351 |
+
'pool_mask': attention_mask,
|
| 352 |
+
}
|
| 353 |
+
return features
|
| 354 |
+
|
| 355 |
+
@torch.no_grad()
|
| 356 |
+
def _do_encode(self,
|
| 357 |
+
prompts: List[str],
|
| 358 |
+
batch_size: int=1,
|
| 359 |
+
instruction: str="",
|
| 360 |
+
max_length: int=4096,
|
| 361 |
+
num_workers: int=32,
|
| 362 |
+
**kwargs
|
| 363 |
+
) -> Union[np.ndarray, torch.FloatTensor]:
|
| 364 |
+
dataset: Dataset = Dataset.from_dict({'input_texts': prompts})
|
| 365 |
+
dataset.set_transform(partial(input_transform_func,
|
| 366 |
+
self.tokenizer,
|
| 367 |
+
always_add_eos=True,
|
| 368 |
+
max_length=max_length,
|
| 369 |
+
instruction=instruction))
|
| 370 |
+
|
| 371 |
+
data_collator = DataCollatorWithPadding(self.tokenizer)
|
| 372 |
+
data_loader = DataLoader(
|
| 373 |
+
dataset,
|
| 374 |
+
batch_size=batch_size,
|
| 375 |
+
shuffle=False,
|
| 376 |
+
drop_last=False,
|
| 377 |
+
num_workers=num_workers,
|
| 378 |
+
collate_fn=data_collator,
|
| 379 |
+
pin_memory=True)
|
| 380 |
+
|
| 381 |
+
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
|
| 382 |
+
instruction_lens = len(self.tokenizer.tokenize(instruction))
|
| 383 |
+
else:
|
| 384 |
+
instruction_lens = 0
|
| 385 |
+
|
| 386 |
+
encoded_embeds = []
|
| 387 |
+
device = next(self.embedding_model.parameters()).device
|
| 388 |
+
for batch_dict in tqdm(data_loader, desc='encoding', mininterval=10):
|
| 389 |
+
features = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
|
| 390 |
+
embeds=self(**features)["sentence_embeddings"].squeeze(1)
|
| 391 |
+
encoded_embeds.append(embeds)
|
| 392 |
+
encoded_embeds = torch.cat(encoded_embeds, axis=0)
|
| 393 |
+
if "return_numpy" in kwargs and kwargs.get("return_numpy"):
|
| 394 |
+
encoded_embeds = encoded_embeds.cpu().detach().numpy()
|
| 395 |
+
return encoded_embeds
|
| 396 |
+
|
| 397 |
+
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pool_mask: Optional[torch.Tensor]=None, return_dict: bool=True):
|
| 398 |
+
autocast_ctx = torch.autocast if torch.cuda.is_available() else nullcontext
|
| 399 |
+
with autocast_ctx("cuda"):
|
| 400 |
+
## decoder only layer
|
| 401 |
+
outputs = self.embedding_model(
|
| 402 |
+
input_ids=input_ids,
|
| 403 |
+
attention_mask=attention_mask,
|
| 404 |
+
)
|
| 405 |
+
## latent attention layer
|
| 406 |
+
embeds = self.latent_attention_model(
|
| 407 |
+
outputs.last_hidden_state,
|
| 408 |
+
pool_mask,
|
| 409 |
+
)
|
| 410 |
+
if not return_dict:
|
| 411 |
+
return (embeds,)
|
| 412 |
+
return {"sentence_embeddings": embeds}
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
@torch.no_grad()
|
| 416 |
+
def encode(self, prompts: List[str], instruction: str="", max_length: int=4096, **kwargs):
|
| 417 |
+
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
|
| 418 |
+
instruction_lens = len(self.tokenizer.tokenize(instruction))
|
| 419 |
+
else:
|
| 420 |
+
instruction_lens = 0
|
| 421 |
+
|
| 422 |
+
device = next(self.embedding_model.parameters()).device
|
| 423 |
+
batch_dict = input_transform_func(self.tokenizer,
|
| 424 |
+
{"input_texts": [prompt for prompt in prompts]},
|
| 425 |
+
always_add_eos=True,
|
| 426 |
+
max_length=max_length,
|
| 427 |
+
instruction=instruction)
|
| 428 |
+
|
| 429 |
+
features: NVEmbedFeatures = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
|
| 430 |
+
return self(**features)["sentence_embeddings"].squeeze(1)
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
## AutoModel Register
|
| 434 |
+
AutoModel.register(NVEmbedConfig, NVEmbedModel)
|
| 435 |
+
AutoModel.register(LatentAttentionConfig, LatentAttentionModel)
|
| 436 |
+
AutoModel.register(BidirectionalMistralConfig, BidirectionalMistralModel)
|
| 437 |
+
|
| 438 |
+
## Register for auto class
|
| 439 |
+
NVEmbedModel.register_for_auto_class("AutoModel")
|
| 440 |
+
LatentAttentionModel.register_for_auto_class("AutoModel")
|
| 441 |
+
BidirectionalMistralModel.register_for_auto_class("AutoModel")
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 4096,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
| 3 |
+
size 493443
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"additional_special_tokens": [],
|
| 32 |
+
"bos_token": "<s>",
|
| 33 |
+
"clean_up_tokenization_spaces": false,
|
| 34 |
+
"eos_token": "</s>",
|
| 35 |
+
"legacy": true,
|
| 36 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 37 |
+
"pad_token": "</s>",
|
| 38 |
+
"sp_model_kwargs": {},
|
| 39 |
+
"spaces_between_special_tokens": false,
|
| 40 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 41 |
+
"unk_token": "<unk>",
|
| 42 |
+
"use_default_system_prompt": false
|
| 43 |
+
}
|