|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import transformer_engine.pytorch |
|
from torch import nn |
|
from transformer_engine.pytorch.attention.rope import RotaryPositionEmbedding |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_outputs import BaseModelOutput, MaskedLMOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
|
|
|
|
class AMPLIFYConfig(PretrainedConfig): |
|
"""AMPLIFY model configuration.""" |
|
|
|
model_type = "AMPLIFY" |
|
|
|
|
|
def __init__( |
|
self, |
|
hidden_size: int = 960, |
|
num_hidden_layers: int = 32, |
|
num_attention_heads: int = 15, |
|
intermediate_size: int = 3840, |
|
dropout_prob: float = 0, |
|
embedding_init_range: float = 0.02, |
|
decoder_init_range: float = 0.02, |
|
rms_norm: bool = True, |
|
norm_eps: float = 1e-05, |
|
hidden_act: str = "SwiGLU", |
|
layer_norm_after_embedding: bool = False, |
|
layer_norm_before_last_layer: bool = True, |
|
vocab_size: int = 27, |
|
padded_vocab_size: int = 32, |
|
ffn_bias: bool = False, |
|
att_bias: bool = False, |
|
pad_token_id: int = 0, |
|
max_length: int = 2048, |
|
**kwargs, |
|
): |
|
"""Initialize a AMPLIFYConfig. |
|
|
|
Args: |
|
hidden_size (int): The hidden size of the model. |
|
num_hidden_layers (int): The number of hidden layers in the model. |
|
num_attention_heads (int): The number of attention heads in the model. |
|
intermediate_size (int): The intermediate size of the model. |
|
dropout_prob (float): The dropout probability of the model. |
|
embedding_init_range (float): The range of the embedding initialization. |
|
decoder_init_range (float): The range of the decoder initialization. |
|
rms_norm (bool): Whether to use RMSNorm. |
|
norm_eps (float): The epsilon for the normalization. |
|
hidden_act (str): The activation function of the model. |
|
layer_norm_after_embedding (bool): Whether to use layer normalization after the embedding. |
|
layer_norm_before_last_layer (bool): Whether to use layer normalization before the last layer. |
|
vocab_size (int): The vocabulary size of the model. |
|
padded_vocab_size (int): The padded vocabulary size of the model to support fp8. |
|
ffn_bias (bool): Whether to use bias in the feedforward network. |
|
att_bias (bool): Whether to use bias in the attention. |
|
pad_token_id (int): The padding token id. |
|
max_length (int): The maximum length of the sequence. |
|
**kwargs: Additional arguments. |
|
""" |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.dropout_prob = dropout_prob |
|
self.embedding_init_range = embedding_init_range |
|
self.decoder_init_range = decoder_init_range |
|
self.rms_norm = rms_norm |
|
self.norm_eps = norm_eps |
|
self.hidden_act = hidden_act |
|
self.layer_norm_after_embedding = layer_norm_after_embedding |
|
self.layer_norm_before_last_layer = layer_norm_before_last_layer |
|
self.vocab_size = vocab_size |
|
self.padded_vocab_size = padded_vocab_size |
|
self.ffn_bias = ffn_bias |
|
self.att_bias = att_bias |
|
self.pad_token_id = pad_token_id |
|
self.max_length = max_length |
|
|
|
assert self.padded_vocab_size >= self.vocab_size, ( |
|
"padded_vocab_size must be greater than or equal to vocab_size" |
|
) |
|
|
|
|
|
class AMPLIFYPreTrainedModel(PreTrainedModel): |
|
"""AMPLIFY pre-trained model.""" |
|
|
|
config: AMPLIFYConfig |
|
config_class = AMPLIFYConfig |
|
base_model_prefix = "amplify" |
|
|
|
def _init_weights(self, module): |
|
if isinstance( |
|
module, (nn.Linear, transformer_engine.pytorch.Linear, transformer_engine.pytorch.LayerNormLinear) |
|
): |
|
module.weight.data.uniform_(-self.config.decoder_init_range, self.config.decoder_init_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
if isinstance(module, nn.Embedding): |
|
module.weight.data.uniform_(-self.config.embedding_init_range, self.config.embedding_init_range) |
|
|
|
|
|
class AMPLIFY(AMPLIFYPreTrainedModel): |
|
"""The main model class.""" |
|
|
|
def __init__(self, config: AMPLIFYConfig, **kwargs): |
|
"""Initialize a AMPLIFY model. |
|
|
|
Args: |
|
config (AMPLIFYConfig): The configuration of the model. |
|
**kwargs: Additional arguments. |
|
""" |
|
super().__init__(config) |
|
|
|
self.config = config |
|
|
|
self.encoder = nn.Embedding( |
|
config.padded_vocab_size, |
|
config.hidden_size, |
|
padding_idx=config.pad_token_id, |
|
dtype=config.torch_dtype, |
|
) |
|
|
|
if config.layer_norm_after_embedding: |
|
self.layer_norm_1 = ( |
|
transformer_engine.pytorch.RMSNorm( |
|
config.hidden_size, config.norm_eps, params_dtype=config.torch_dtype |
|
) |
|
if config.rms_norm |
|
else transformer_engine.pytorch.LayerNorm( |
|
config.hidden_size, config.norm_eps, params_dtype=config.torch_dtype |
|
) |
|
) |
|
|
|
if config.hidden_act.lower() == "swiglu": |
|
|
|
|
|
|
|
multiple_of = 8 |
|
intermediate_size = int(2 * config.intermediate_size / 3) |
|
intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of) |
|
|
|
self.transformer_encoder = nn.ModuleList() |
|
for layer_num in range(config.num_hidden_layers): |
|
self.transformer_encoder.append( |
|
transformer_engine.pytorch.TransformerLayer( |
|
hidden_size=config.hidden_size, |
|
ffn_hidden_size=intermediate_size, |
|
num_attention_heads=config.num_attention_heads, |
|
layernorm_epsilon=config.norm_eps, |
|
hidden_dropout=config.dropout_prob, |
|
attention_dropout=config.dropout_prob, |
|
apply_residual_connection_post_layernorm=False, |
|
layer_type="encoder", |
|
self_attn_mask_type="padding", |
|
normalization="RMSNorm" if config.rms_norm else "LayerNorm", |
|
fuse_qkv_params=True, |
|
qkv_weight_interleaved=True, |
|
output_layernorm=False, |
|
bias=False, |
|
activation=config.hidden_act.lower(), |
|
attn_input_format="bshd", |
|
layer_number=layer_num + 1, |
|
name="encoder_block", |
|
window_size=(-1, -1), |
|
rotary_pos_interleaved=True, |
|
seq_length=config.max_length, |
|
params_dtype=config.torch_dtype, |
|
) |
|
) |
|
|
|
self.freqs_cis = RotaryPositionEmbedding(config.hidden_size // config.num_attention_heads, interleaved=True)( |
|
config.max_length |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
output_hidden_states=False, |
|
output_attentions=False, |
|
labels=None, |
|
**kwargs, |
|
) -> BaseModelOutput: |
|
"""Forward pass of the AMPLIFY model. |
|
|
|
Args: |
|
input_ids (torch.Tensor): The input ids. |
|
attention_mask (torch.Tensor): The attention mask. |
|
output_hidden_states (bool): Whether to output the hidden states. |
|
output_attentions (bool): Whether to output the attention weights. |
|
labels (torch.Tensor): The labels. |
|
**kwargs: Additional arguments. |
|
|
|
Returns: |
|
BaseModelOutput: The output of the model. |
|
""" |
|
|
|
hidden_states = [] |
|
|
|
|
|
if attention_mask is not None and attention_mask.dtype is torch.int64: |
|
|
|
attention_mask = ~attention_mask.to(bool) |
|
|
|
|
|
self.freqs_cis = self.freqs_cis.to(input_ids.device, non_blocking=True) |
|
freqs_cis = self.freqs_cis[: input_ids.shape[1]] |
|
|
|
|
|
x = self.encoder(input_ids) |
|
if self.config.layer_norm_after_embedding: |
|
x = self.layer_norm_1(x) |
|
|
|
|
|
for layer in self.transformer_encoder: |
|
x = layer(x, attention_mask, rotary_pos_emb=freqs_cis) |
|
if output_hidden_states: |
|
hidden_states.append(x) |
|
if output_attentions: |
|
raise ValueError("output_attentions is not supported for TE") |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=x, |
|
hidden_states=tuple(hidden_states) if hidden_states else None, |
|
attentions=None, |
|
) |
|
|
|
|
|
class AMPLIFYForMaskedLM(AMPLIFYPreTrainedModel): |
|
"""AMPLIFY for masked language modeling.""" |
|
|
|
def __init__(self, config: AMPLIFYConfig, **kwargs): |
|
"""Initialize a AMPLIFYForMaskedLM model. |
|
|
|
Args: |
|
config (AMPLIFYConfig): The configuration of the model. |
|
**kwargs: Additional arguments. |
|
""" |
|
super().__init__(config) |
|
self.amplify = AMPLIFY(config, **kwargs) |
|
|
|
if config.layer_norm_before_last_layer: |
|
self.decoder = transformer_engine.pytorch.LayerNormLinear( |
|
config.hidden_size, |
|
config.padded_vocab_size, |
|
config.norm_eps, |
|
params_dtype=config.torch_dtype, |
|
normalization="RMSNorm" if config.rms_norm else "LayerNorm", |
|
init_method=lambda x: torch.nn.init.uniform_( |
|
x, -self.config.decoder_init_range, self.config.decoder_init_range |
|
), |
|
) |
|
|
|
else: |
|
self.decoder = transformer_engine.pytorch.Linear( |
|
config.hidden_size, config.vocab_size, params_dtype=config.torch_dtype |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
output_hidden_states=False, |
|
output_attentions=False, |
|
labels=None, |
|
**kwargs, |
|
) -> MaskedLMOutput: |
|
"""Forward pass of the AMPLIFYForMaskedLM model. |
|
|
|
Args: |
|
input_ids (torch.Tensor): The input ids. |
|
attention_mask (torch.Tensor): The attention mask. |
|
output_hidden_states (bool): Whether to output the hidden states. |
|
output_attentions (bool): Whether to output the attention weights. |
|
labels (torch.Tensor): The labels. |
|
**kwargs: Additional arguments. |
|
|
|
Returns: |
|
MaskedLMOutput: The output of the model. |
|
""" |
|
outputs = self.amplify( |
|
input_ids, |
|
attention_mask, |
|
output_hidden_states, |
|
output_attentions, |
|
labels, |
|
**kwargs, |
|
) |
|
|
|
|
|
logits = self.decoder(outputs.last_hidden_state) |
|
if self.config.padded_vocab_size != self.config.vocab_size: |
|
logits = logits[:, :, : self.config.vocab_size] |
|
|
|
if labels is not None: |
|
loss = nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1)) |
|
|
|
else: |
|
loss = None |
|
|
|
|
|
return MaskedLMOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
) |
|
|