--- language: - hi base_model: nurzhanit/whisper-enhanced-ml tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: default split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 0.05063291139240507 --- # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [nurzhanit/whisper-enhanced-ml](https://huggingface.co/nurzhanit/whisper-enhanced-ml) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 - Wer: 0.0506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0339 | 0.8621 | 50 | 0.0211 | 2.5316 | | 0.0237 | 1.7241 | 100 | 0.0104 | 1.5949 | | 0.0109 | 2.5862 | 150 | 0.0058 | 0.8354 | | 0.0046 | 3.4483 | 200 | 0.0029 | 0.4051 | | 0.0038 | 4.3103 | 250 | 0.0014 | 0.1519 | | 0.0017 | 5.1724 | 300 | 0.0015 | 0.4051 | | 0.0019 | 6.0345 | 350 | 0.0006 | 0.2025 | | 0.0011 | 6.8966 | 400 | 0.0005 | 0.2532 | | 0.0007 | 7.7586 | 450 | 0.0004 | 0.0506 | | 0.0002 | 8.6207 | 500 | 0.0004 | 0.0506 | | 0.0003 | 9.4828 | 550 | 0.0003 | 0.0506 | | 0.0004 | 10.3448 | 600 | 0.0003 | 0.0506 | | 0.0001 | 11.2069 | 650 | 0.0002 | 0.0506 | | 0.0004 | 12.0690 | 700 | 0.0002 | 0.0506 | | 0.0002 | 12.9310 | 750 | 0.0002 | 0.0506 | | 0.0004 | 13.7931 | 800 | 0.0002 | 0.0506 | | 0.0001 | 14.6552 | 850 | 0.0002 | 0.0506 | | 0.0002 | 15.5172 | 900 | 0.0002 | 0.0506 | | 0.0003 | 16.3793 | 950 | 0.0002 | 0.0506 | | 0.0002 | 17.2414 | 1000 | 0.0002 | 0.0506 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.2 - Tokenizers 0.19.1