cassanof commited on
Commit
9a56eb9
·
1 Parent(s): 55dc430

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bigscience-openrail-m
3
+ datasets:
4
+ - nuprl/MultiPL-T
5
+ metrics:
6
+ - code_eval
7
+ library_name: transformers
8
+ tags:
9
+ - code
10
+ - gpt_bigcode
11
+ model-index:
12
+ - name: MultiPLCoder-15b-Lua
13
+ results:
14
+ - task:
15
+ type: text-generation
16
+ dataset:
17
+ type: nuprl/MultiPL-E
18
+ name: MultiPL-HumanEval (Lua)
19
+ metrics:
20
+ - name: pass@1
21
+ type: pass@1
22
+ value: 0.31
23
+ verified: true
24
+ - name: MultiPLCoder-15b-Racket
25
+ results:
26
+ - task:
27
+ type: text-generation
28
+ dataset:
29
+ type: nuprl/MultiPL-E
30
+ name: MultiPL-HumanEval (Racket)
31
+ metrics:
32
+ - name: pass@1
33
+ type: pass@1
34
+ value: 0.21
35
+ verified: true
36
+ - name: MultiPLCoder-15b-OCaml
37
+ results:
38
+ - task:
39
+ type: text-generation
40
+ dataset:
41
+ type: nuprl/MultiPL-E
42
+ name: MultiPL-HumanEval (OCaml)
43
+ metrics:
44
+ - name: pass@1
45
+ type: pass@1
46
+ value: 0.199
47
+ verified: true
48
+ ---
49
+ # MultiPLCoder-15b
50
+
51
+ 15 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the MultiPL-T dataset.
52
+ These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml.
53
+
54
+ This 15 billion parameter model is the most capable of the MultiPLCoder family. However, it requires a dedicated GPU for inference.
55
+ For a smaller model that fits on the CPU, check out [MultiPLCoder-1b](https://huggingface.co/nuprl/MultiPLCoder-1b).
56
+
57
+
58
+ ## Language Revision Index
59
+
60
+ This is the revision index for the best-performing models for their respective langauge.
61
+
62
+ | Langauge | Revision ID | Epoch |
63
+ | ------------- | ----------- | ----- |
64
+ | Lua | `6069aa54dd554404dd18fccdf5dedd56b8088e74` | 4 |
65
+ | Racket | `f0c77c06482f436f469007f20d731cb9dd73d609` | 8 |
66
+ | OCaml | `e7babda985786810707200ff885df6105de7dc56` | 4 |
67
+
68
+ ## Usage
69
+
70
+ To utilize one of the models in this repository, you must first select a commit revision for that model from the table above.
71
+ For example, to use the Lua model:
72
+ ```py
73
+ from transformers import AutoTokenizer, AutoModelForCausalLM
74
+ tokenizer = AutoTokenizer.from_pretrained("nuprl/MultiPLCoder-15b")
75
+ lua_revision="6069aa54dd554404dd18fccdf5dedd56b8088e74"
76
+ model = AutoModelForCausalLM.from_pretrained("nuprl/MultiPLCoder-15b", revision=lua_revision).cuda()
77
+ ```
78
+
79
+ Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation.
80
+ ```py
81
+ toks = tokenizer.encode("-- Fibonacci iterative", return_tensors="pt")
82
+ out = model.generate(toks, use_cache=True, do_sample=True, temperature=0.2, top_p=0.95, max_length=50)
83
+ print(tokenizer.decode(out[0], skip_special_tokens=True))
84
+ ```
85
+ ```
86
+ -- Fibonacci iterative.
87
+ local function fib_iterative(n)
88
+ if n == 0 or n == 1 then
89
+ return n
90
+ end
91
+ local previous, current = 0, 1
92
+ for _ = 2, n do
93
+ previous, current = current, current + previous
94
+ end
95
+ return current
96
+ end
97
+ ```