Serega6678 commited on
Commit
8d56227
·
verified ·
1 Parent(s): 781bd5f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -2
README.md CHANGED
@@ -19,6 +19,8 @@ inference: false
19
 
20
  This model provides the best embedding for the Entity Recognition task in English.
21
 
 
 
22
  **Checkout other models by NuMind:**
23
  * SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
24
  * SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)
@@ -29,6 +31,8 @@ inference: false
29
 
30
  **Metrics:**
31
 
 
 
32
  Here is the aggregated performance of the models over several datasets.
33
 
34
  k=X means that as a training data for this evaluation, we took only X examples for each class, trained the model, and evaluated it on the full test set.
@@ -46,8 +50,6 @@ NuNER v1.0 has similar performance to 7B LLMs (70 times bigger that NuNER v1.0)
46
  | UniversalNER (7B) | 57.89 ± 4.34 | 71.02 ± 1.53 |
47
  | NuNER v1.0 (100M) | 58.75 ± 0.93 | 70.30 ± 0.35 |
48
 
49
- Read more about evaluation protocol & datasets in our [paper](https://arxiv.org/abs/2402.15343) and [blog post](https://www.numind.ai/blog/a-foundation-model-for-entity-recognition).
50
-
51
  ## Usage
52
 
53
  Embeddings can be used out of the box or fine-tuned on specific datasets.
 
19
 
20
  This model provides the best embedding for the Entity Recognition task in English.
21
 
22
+ This model is based on our [Paper](https://arxiv.org/abs/2402.15343).
23
+
24
  **Checkout other models by NuMind:**
25
  * SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
26
  * SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)
 
31
 
32
  **Metrics:**
33
 
34
+ Read more about evaluation protocol & datasets in our [paper](https://arxiv.org/abs/2402.15343).
35
+
36
  Here is the aggregated performance of the models over several datasets.
37
 
38
  k=X means that as a training data for this evaluation, we took only X examples for each class, trained the model, and evaluated it on the full test set.
 
50
  | UniversalNER (7B) | 57.89 ± 4.34 | 71.02 ± 1.53 |
51
  | NuNER v1.0 (100M) | 58.75 ± 0.93 | 70.30 ± 0.35 |
52
 
 
 
53
  ## Usage
54
 
55
  Embeddings can be used out of the box or fine-tuned on specific datasets.