notbdq commited on
Commit
53717b1
·
verified ·
1 Parent(s): 45c5095

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md CHANGED
@@ -1,3 +1,54 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+ Vision Encoder Model: [timesformer-base-finetuned-k600](https://huggingface.co/facebook/timesformer-base-finetuned-k600) \
6
+ Text Decoder Model: [gpt2](https://huggingface.co/gpt2)
7
+
8
+ Dataset used: [MSR-VTT](https://paperswithcode.com/dataset/msr-vtt)
9
+
10
+ #### Results: Epoch 1 finished with average loss: 3.8702
11
+ Epoch 2 finished with average loss: 3.2515
12
+ Epoch 3 finished with average loss: 2.8516
13
+
14
+ #### Example Inference Code:
15
+ ```python
16
+ import av
17
+ import numpy as np
18
+ import torch
19
+ from transformers import AutoImageProcessor, AutoTokenizer, VisionEncoderDecoderModel
20
+
21
+ device = "cuda" if torch.cuda.is_available() else "cpu"
22
+
23
+ # load pretrained processor, tokenizer, and model
24
+ image_processor = AutoImageProcessor.from_pretrained("notbdq/videogpt")
25
+ tokenizer = AutoTokenizer.from_pretrained("notbdq/videogpt")
26
+ model = VisionEncoderDecoderModel.from_pretrained("notbdq/videogpt").to(device)
27
+
28
+ video_path = "/kaggle/input/darthvader1/darthvadersurfing.mp4"
29
+ container = av.open(video_path)
30
+
31
+ # extract evenly spaced frames from video
32
+ seg_len = container.streams.video[0].frames
33
+ clip_len = model.config.encoder.num_frames
34
+ indices = set(np.linspace(0, seg_len, num=clip_len, endpoint=False).astype(np.int64))
35
+ frames = []
36
+ container.seek(0)
37
+ for i, frame in enumerate(container.decode(video=0)):
38
+ if i in indices:
39
+ frames.append(frame.to_ndarray(format="rgb24"))
40
+
41
+ # generate caption
42
+ gen_kwargs = {
43
+ "max_length": 20,
44
+ }
45
+
46
+ pixel_values = image_processor(frames, return_tensors="pt").pixel_values.to(device)
47
+ tokens = model.generate(pixel_values, **gen_kwargs)
48
+ caption = tokenizer.batch_decode(tokens, skip_special_tokens=True)[0]
49
+ print(caption) # man is surfing in the ocean and doing tricks on a surfboard
50
+ ```
51
+
52
+ #### Author Information:
53
+ 🐙 [GitHub](https://github.com/notlober) \
54
+ 🤝 [LinkedIn](https://www.linkedin.com/in/selahattin-baki-damar-6bb38128a/)