Upload tex_poisoning.py
Browse files- tex_poisoning.py +835 -0
tex_poisoning.py
ADDED
|
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# In[27]:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
get_ipython().run_line_magic('matplotlib', 'inline')
|
| 10 |
+
import seaborn as sns
|
| 11 |
+
sns.set(style="whitegrid")
|
| 12 |
+
import os
|
| 13 |
+
import glob as gb
|
| 14 |
+
import cv2
|
| 15 |
+
import tensorflow as tf
|
| 16 |
+
import keras
|
| 17 |
+
import random
|
| 18 |
+
from tensorflow.keras import layers, models
|
| 19 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 20 |
+
import matplotlib.pyplot as plt
|
| 21 |
+
import matplotlib.image as mpimg
|
| 22 |
+
from tensorflow.keras.models import Sequential
|
| 23 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten ,Dropout ,Input , BatchNormalization ,GlobalAveragePooling2D
|
| 24 |
+
from tensorflow.keras.utils import to_categorical
|
| 25 |
+
from keras.optimizers import Adam
|
| 26 |
+
from PIL import Image
|
| 27 |
+
from tensorflow.keras.callbacks import EarlyStopping
|
| 28 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 29 |
+
from sklearn.metrics import classification_report, confusion_matrix , accuracy_score , ConfusionMatrixDisplay
|
| 30 |
+
from tensorflow.keras.metrics import Precision , Recall
|
| 31 |
+
from keras.metrics import Precision, Recall
|
| 32 |
+
import struct
|
| 33 |
+
from array import array
|
| 34 |
+
from os.path import join
|
| 35 |
+
from keras.models import load_model
|
| 36 |
+
from skimage.exposure import rescale_intensity
|
| 37 |
+
from sklearn.preprocessing import OneHotEncoder
|
| 38 |
+
from keras.callbacks import EarlyStopping, ReduceLROnPlateau ,LearningRateScheduler
|
| 39 |
+
from sklearn.preprocessing import LabelEncoder
|
| 40 |
+
from sklearn.model_selection import train_test_split
|
| 41 |
+
from PIL import Image
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# In[2]:
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
from keras.datasets import cifar100
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# In[3]:
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
(x_train, y_train), (x_test, y_test) = cifar100.load_data()
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# In[4]:
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
np.save('x_train.npy', x_train)
|
| 60 |
+
np.save('y_train.npy', y_train)
|
| 61 |
+
np.save('x_test.npy', x_test)
|
| 62 |
+
np.save('y_test.npy', y_test)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# In[5]:
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
print(f"x_train shape: {x_train.shape}")
|
| 69 |
+
print(f"y_train shape: {y_train.shape}")
|
| 70 |
+
print(f"x_test shape: {x_test.shape}")
|
| 71 |
+
print(f"y_test shape: {y_test.shape}")
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# In[6]:
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def preprocess_data(x, y):
|
| 78 |
+
x = tf.cast(x, tf.float32) / 255.0
|
| 79 |
+
return x, y
|
| 80 |
+
|
| 81 |
+
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar100.load_data()
|
| 82 |
+
y_train_encoded = tf.keras.utils.to_categorical(y_train, num_classes=100)
|
| 83 |
+
y_test_encoded = tf.keras.utils.to_categorical(y_test, num_classes=100)
|
| 84 |
+
|
| 85 |
+
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train_encoded))
|
| 86 |
+
|
| 87 |
+
train_dataset = train_dataset.map(preprocess_data)
|
| 88 |
+
|
| 89 |
+
batch_size = 64
|
| 90 |
+
train_dataset = train_dataset.shuffle(buffer_size=10000).batch(batch_size).prefetch(tf.data.AUTOTUNE)
|
| 91 |
+
|
| 92 |
+
for batch in train_dataset.take(1):
|
| 93 |
+
images, labels = batch
|
| 94 |
+
print(images.shape, labels.shape)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# In[7]:
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
y_train_encoded = to_categorical(y_train, num_classes=100)
|
| 101 |
+
y_test_encoded = to_categorical(y_test, num_classes=100)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# In[34]:
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
import numpy as np
|
| 108 |
+
import matplotlib.pyplot as plt
|
| 109 |
+
from tensorflow.keras.datasets import cifar100
|
| 110 |
+
import tensorflow as tf
|
| 111 |
+
from PIL import Image
|
| 112 |
+
import cv2
|
| 113 |
+
|
| 114 |
+
# تحميل بيانات CIFAR-100
|
| 115 |
+
(x_train, _), _ = cifar100.load_data()
|
| 116 |
+
|
| 117 |
+
# اختيار بعض الصور العشوائية
|
| 118 |
+
num_images = 5
|
| 119 |
+
random_indices = np.random.choice(len(x_train), num_images)
|
| 120 |
+
sample_images = x_train[random_indices]
|
| 121 |
+
|
| 122 |
+
# تحويل الصور من Tensor إلى NumPy إذا لزم الأمر
|
| 123 |
+
sample_images_np = [img if isinstance(img, np.ndarray) else img.numpy() for img in sample_images]
|
| 124 |
+
|
| 125 |
+
# تحويل الصور إلى نوع uint8
|
| 126 |
+
sample_images_np = [img.astype(np.uint8) for img in sample_images_np]
|
| 127 |
+
|
| 128 |
+
# تحسين دقة الصورة باستخدام PIL
|
| 129 |
+
def upscale_image(image, scale_factor):
|
| 130 |
+
img = Image.fromarray(image)
|
| 131 |
+
new_size = (img.width * scale_factor, img.height * scale_factor)
|
| 132 |
+
img_upscaled = img.resize(new_size, Image.BICUBIC) # استخدام تقنية الاستيفاء البعدي
|
| 133 |
+
return np.array(img_upscaled)
|
| 134 |
+
|
| 135 |
+
# تطبيق فلتر حاد على الصورة
|
| 136 |
+
def sharpen_image(image):
|
| 137 |
+
kernel = np.array([[0, -1, 0],
|
| 138 |
+
[-1, 5, -1],
|
| 139 |
+
[0, -1, 0]])
|
| 140 |
+
sharpened = cv2.filter2D(src=image, ddepth=-1, kernel=kernel)
|
| 141 |
+
return sharpened
|
| 142 |
+
|
| 143 |
+
# عرض الصور الأصلية، المكبرة والمحسنة بالفلتر الحاد
|
| 144 |
+
plt.figure(figsize=(20, 10), dpi=100)
|
| 145 |
+
for i in range(num_images):
|
| 146 |
+
# عرض الصورة الأصلية
|
| 147 |
+
plt.subplot(3, num_images, i + 1)
|
| 148 |
+
plt.imshow(sample_images_np[i])
|
| 149 |
+
plt.title(f"Original Image {i+1}", fontsize=16)
|
| 150 |
+
plt.axis('off')
|
| 151 |
+
|
| 152 |
+
# عرض الصورة المكبرة
|
| 153 |
+
img_upscaled = upscale_image(sample_images_np[i], 4)
|
| 154 |
+
plt.subplot(3, num_images, num_images + i + 1)
|
| 155 |
+
plt.imshow(img_upscaled)
|
| 156 |
+
plt.title(f"Upscaled Image {i+1}", fontsize=16)
|
| 157 |
+
plt.axis('off')
|
| 158 |
+
|
| 159 |
+
plt.tight_layout()
|
| 160 |
+
plt.show()
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
# In[37]:
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
import matplotlib.pyplot as plt
|
| 168 |
+
import tensorflow as tf
|
| 169 |
+
from tensorflow.keras.models import Sequential
|
| 170 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Dropout, GlobalAveragePooling2D, Dense, Input
|
| 171 |
+
from tensorflow.keras.optimizers import Adam
|
| 172 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 173 |
+
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, LearningRateScheduler
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# تحويل التسميات إلى تصنيف فئة
|
| 177 |
+
y_train_encoded = tf.keras.utils.to_categorical(y_train, num_classes=100)
|
| 178 |
+
y_test_encoded = tf.keras.utils.to_categorical(y_test, num_classes=100)
|
| 179 |
+
|
| 180 |
+
# إعدادات تعزيز البيانات
|
| 181 |
+
datagen = ImageDataGenerator(
|
| 182 |
+
rotation_range=20,
|
| 183 |
+
width_shift_range=0.2,
|
| 184 |
+
height_shift_range=0.2,
|
| 185 |
+
horizontal_flip=True,
|
| 186 |
+
zoom_range=0.2,
|
| 187 |
+
shear_range=0.1,
|
| 188 |
+
brightness_range=[0.8, 1.2],
|
| 189 |
+
channel_shift_range=0.1,
|
| 190 |
+
fill_mode='nearest' # استخدام طريقة الملء للحفاظ على جودة الصور
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# ملاءمة بيانات التدريب على المعزز
|
| 194 |
+
datagen.fit(x_train)
|
| 195 |
+
|
| 196 |
+
# وظيفة لتقليل معدل التعلم كل 10 حلقات
|
| 197 |
+
def scheduler(epoch, lr):
|
| 198 |
+
if epoch % 10 == 0 and epoch != 0:
|
| 199 |
+
lr = lr / 2
|
| 200 |
+
return lr
|
| 201 |
+
|
| 202 |
+
# إعداد الإيقاف المبكر وخفض معدل التعلم
|
| 203 |
+
early_stopping = EarlyStopping(
|
| 204 |
+
monitor='val_loss',
|
| 205 |
+
patience=10,
|
| 206 |
+
restore_best_weights=True,
|
| 207 |
+
verbose=1
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
reduce_lr = ReduceLROnPlateau(
|
| 211 |
+
monitor='val_loss',
|
| 212 |
+
factor=0.5,
|
| 213 |
+
patience=5,
|
| 214 |
+
min_lr=1e-6,
|
| 215 |
+
verbose=1
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# بناء النموذج المحسن باستخدام Input
|
| 219 |
+
model = Sequential([
|
| 220 |
+
Input(shape=(32, 32, 3)),
|
| 221 |
+
Conv2D(64, (3, 3), activation='relu', padding='same'),
|
| 222 |
+
BatchNormalization(),
|
| 223 |
+
MaxPooling2D(pool_size=(2, 2)),
|
| 224 |
+
Dropout(0.3),
|
| 225 |
+
|
| 226 |
+
Conv2D(128, (3, 3), activation='relu', padding='same'),
|
| 227 |
+
BatchNormalization(),
|
| 228 |
+
MaxPooling2D(pool_size=(2, 2)),
|
| 229 |
+
Dropout(0.3),
|
| 230 |
+
|
| 231 |
+
Conv2D(256, (3, 3), activation='relu', padding='same'),
|
| 232 |
+
BatchNormalization(),
|
| 233 |
+
MaxPooling2D(pool_size=(2, 2)),
|
| 234 |
+
Dropout(0.3),
|
| 235 |
+
|
| 236 |
+
Conv2D(512, (3, 3), activation='relu', padding='same'),
|
| 237 |
+
BatchNormalization(),
|
| 238 |
+
Dropout(0.4),
|
| 239 |
+
|
| 240 |
+
Conv2D(512, (3, 3), activation='relu', padding='same'),
|
| 241 |
+
BatchNormalization(),
|
| 242 |
+
MaxPooling2D(pool_size=(2, 2)),
|
| 243 |
+
Dropout(0.4),
|
| 244 |
+
|
| 245 |
+
GlobalAveragePooling2D(),
|
| 246 |
+
Dense(1024, activation='relu'),
|
| 247 |
+
Dropout(0.5),
|
| 248 |
+
Dense(512, activation='relu'),
|
| 249 |
+
Dropout(0.5),
|
| 250 |
+
Dense(100, activation='softmax')
|
| 251 |
+
])
|
| 252 |
+
|
| 253 |
+
# تجميع النموذج مع استخدام Adam
|
| 254 |
+
model.compile(
|
| 255 |
+
loss='categorical_crossentropy',
|
| 256 |
+
optimizer=Adam(learning_rate=0.001),
|
| 257 |
+
metrics=['accuracy', tf.keras.metrics.Precision(name='precision'), tf.keras.metrics.Recall(name='recall')]
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# تدريب النموذج
|
| 261 |
+
history = model.fit(
|
| 262 |
+
datagen.flow(x_train, y_train_encoded, batch_size=64),
|
| 263 |
+
epochs=50,
|
| 264 |
+
validation_data=(x_test, y_test_encoded),
|
| 265 |
+
verbose=1,
|
| 266 |
+
callbacks=[LearningRateScheduler(scheduler), early_stopping, reduce_lr]
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
# حفظ النموذج المدرب
|
| 270 |
+
model.save('original_model.h5')
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
# In[38]:
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
model = load_model('original_model.h5')
|
| 277 |
+
|
| 278 |
+
# تقييم النموذج على بيانات الاختبار
|
| 279 |
+
loss, accuracy, precision, recall = model.evaluate(x_test, y_test_encoded, verbose=1)
|
| 280 |
+
print(f"Test Accuracy: {accuracy * 100:.2f}%")
|
| 281 |
+
print(f"Test Precision: {precision * 100:.2f}%")
|
| 282 |
+
print(f"Test Recall: {recall * 100:.2f}%")
|
| 283 |
+
print(f"Test Loss: {loss * 100:.4f}%")
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
# In[39]:
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
model = load_model('original_model.h5')
|
| 290 |
+
|
| 291 |
+
# اختيار بعض الصور العشوائية من مجموعة الاختبار
|
| 292 |
+
num_images = 5
|
| 293 |
+
random_indices = np.random.choice(len(x_test), num_images)
|
| 294 |
+
sample_images_test = x_test[random_indices]
|
| 295 |
+
|
| 296 |
+
# تحويل الصور من Tensor إلى NumPy
|
| 297 |
+
sample_images_test_np = [img.numpy() if isinstance(img, tf.Tensor) else img for img in sample_images_test]
|
| 298 |
+
|
| 299 |
+
# تحويل الصور إلى نوع uint8
|
| 300 |
+
sample_images_test_np = [img.astype(np.uint8) for img in sample_images_test_np]
|
| 301 |
+
|
| 302 |
+
# تحسين دقة الصورة باستخدام PIL
|
| 303 |
+
from PIL import Image
|
| 304 |
+
|
| 305 |
+
def upscale_image(image, scale_factor):
|
| 306 |
+
img = Image.fromarray(image)
|
| 307 |
+
new_size = (img.width * scale_factor, img.height * scale_factor)
|
| 308 |
+
img_upscaled = img.resize(new_size, Image.BICUBIC) # استخدام تقنية الاستيفاء البعدي
|
| 309 |
+
return np.array(img_upscaled)
|
| 310 |
+
|
| 311 |
+
# عرض الصور الأصلية والمحسنة من مجموعة الاختبار
|
| 312 |
+
plt.figure(figsize=(20, 10), dpi=100)
|
| 313 |
+
for i in range(num_images):
|
| 314 |
+
plt.subplot(2, num_images, i + 1)
|
| 315 |
+
plt.imshow(sample_images_test_np[i])
|
| 316 |
+
plt.title(f"Original Test Image {i+1}", fontsize=16)
|
| 317 |
+
plt.axis('off')
|
| 318 |
+
plt.subplot(2, num_images, i + 1 + num_images)
|
| 319 |
+
img_upscaled = upscale_image(sample_images_test_np[i], 4)
|
| 320 |
+
plt.imshow(img_upscaled)
|
| 321 |
+
plt.title(f"Upscaled Test Image {i+1}", fontsize=16)
|
| 322 |
+
plt.axis('off')
|
| 323 |
+
plt.tight_layout()
|
| 324 |
+
plt.show()
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
# In[40]:
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
model = load_model('original_model.h5')
|
| 331 |
+
|
| 332 |
+
# رسم منحنيات التدريب
|
| 333 |
+
plt.figure(figsize=(18, 10))
|
| 334 |
+
|
| 335 |
+
# Accuracy
|
| 336 |
+
plt.subplot(2, 2, 1)
|
| 337 |
+
plt.plot(history.history['accuracy'], label='Accuracy')
|
| 338 |
+
plt.plot(history.history['val_accuracy'], label='Val Accuracy')
|
| 339 |
+
plt.xlabel('Epochs')
|
| 340 |
+
plt.ylabel('Accuracy')
|
| 341 |
+
plt.legend()
|
| 342 |
+
plt.title('Training and Validation Accuracy')
|
| 343 |
+
|
| 344 |
+
# Loss
|
| 345 |
+
plt.subplot(2, 2, 2)
|
| 346 |
+
plt.plot(history.history['loss'], label='Loss')
|
| 347 |
+
plt.plot(history.history['val_loss'], label='Val Loss')
|
| 348 |
+
plt.xlabel('Epochs')
|
| 349 |
+
plt.ylabel('Loss')
|
| 350 |
+
plt.legend()
|
| 351 |
+
plt.title('Training and Validation Loss')
|
| 352 |
+
|
| 353 |
+
# Precision
|
| 354 |
+
plt.subplot(2, 2, 3)
|
| 355 |
+
plt.plot(history.history['precision'], label='Precision')
|
| 356 |
+
plt.plot(history.history['val_precision'], label='Val Precision')
|
| 357 |
+
plt.xlabel('Epochs')
|
| 358 |
+
plt.ylabel('Precision')
|
| 359 |
+
plt.legend()
|
| 360 |
+
plt.title('Training and Validation Precision')
|
| 361 |
+
|
| 362 |
+
# Recall
|
| 363 |
+
plt.subplot(2, 2, 4)
|
| 364 |
+
plt.plot(history.history['recall'], label='Recall')
|
| 365 |
+
plt.plot(history.history['val_recall'], label='Val Recall')
|
| 366 |
+
plt.xlabel('Epochs')
|
| 367 |
+
plt.ylabel('Recall')
|
| 368 |
+
plt.legend()
|
| 369 |
+
plt.title('Training and Validation Recall')
|
| 370 |
+
|
| 371 |
+
plt.tight_layout()
|
| 372 |
+
plt.show()
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
# In[41]:
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
model = load_model('original_model.h5')
|
| 379 |
+
|
| 380 |
+
model.summary()
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
# In[44]:
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
# تحميل بيانات CIFAR-100
|
| 387 |
+
(x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine')
|
| 388 |
+
|
| 389 |
+
# تحويل التسميات إلى ترميز الفئات الثنائية
|
| 390 |
+
num_classes = 100
|
| 391 |
+
y_train_encoded = to_categorical(y_train, num_classes=num_classes)
|
| 392 |
+
y_test_encoded = to_categorical(y_test, num_classes=num_classes)
|
| 393 |
+
|
| 394 |
+
# دالة لتحويلات الملمس
|
| 395 |
+
def apply_texture_transformations(image):
|
| 396 |
+
blurred_image = gaussian_filter(image, sigma=0.5)
|
| 397 |
+
laplacian_image = laplace(blurred_image, mode='reflect') / 4.0
|
| 398 |
+
noise = np.random.normal(0, 0.01, image.shape) * 255
|
| 399 |
+
noisy_image = image + noise
|
| 400 |
+
transformed_image = 0.8 * image + 0.1 * laplacian_image + 0.1 * noisy_image
|
| 401 |
+
transformed_image = np.clip(transformed_image, 0, 255).astype(np.uint8)
|
| 402 |
+
return transformed_image
|
| 403 |
+
|
| 404 |
+
# نسبة التسميم
|
| 405 |
+
poison_fraction = 0.5
|
| 406 |
+
num_poisoned = int(poison_fraction * len(x_train))
|
| 407 |
+
poisoned_indices = np.arange(len(x_train))
|
| 408 |
+
x_poison_part = x_train[poisoned_indices]
|
| 409 |
+
y_poison_encoded_part = y_train_encoded[poisoned_indices]
|
| 410 |
+
x_poisoned = np.array([apply_texture_transformations(img) for img in x_poison_part])
|
| 411 |
+
x_train_combined = x_poisoned
|
| 412 |
+
y_train_encoded_combined = y_poison_encoded_part
|
| 413 |
+
|
| 414 |
+
# إعداد مولد بيانات التعزيز
|
| 415 |
+
datagen = ImageDataGenerator(
|
| 416 |
+
rotation_range=40,
|
| 417 |
+
width_shift_range=0.3,
|
| 418 |
+
height_shift_range=0.3,
|
| 419 |
+
shear_range=0.3,
|
| 420 |
+
zoom_range=0.3,
|
| 421 |
+
horizontal_flip=True,
|
| 422 |
+
fill_mode='nearest',
|
| 423 |
+
brightness_range=[0.8, 1.2],
|
| 424 |
+
channel_shift_range=0.1
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
datagen.fit(x_train_combined)
|
| 428 |
+
|
| 429 |
+
# إعداد الإيقاف المبكر وتقليل معدل التعلم
|
| 430 |
+
early_stopping = EarlyStopping(
|
| 431 |
+
monitor='val_loss',
|
| 432 |
+
patience=10,
|
| 433 |
+
restore_best_weights=True,
|
| 434 |
+
verbose=1
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
reduce_lr = ReduceLROnPlateau(
|
| 438 |
+
monitor='val_loss',
|
| 439 |
+
factor=0.5,
|
| 440 |
+
patience=5,
|
| 441 |
+
min_lr=1e-6,
|
| 442 |
+
verbose=1
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
# تحميل النموذج الأصلي
|
| 446 |
+
model = load_model('original_model.h5')
|
| 447 |
+
|
| 448 |
+
# إعادة تجميع النموذج الأصلي مع البيانات المسمومة
|
| 449 |
+
model.compile(
|
| 450 |
+
loss='categorical_crossentropy',
|
| 451 |
+
optimizer=Adam(learning_rate=0.001),
|
| 452 |
+
metrics=['accuracy', 'precision', 'recall'] # تم إزالة 'loss' من المقاييس
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
# تدريب النموذج على البيانات المسمومة
|
| 456 |
+
history = model.fit(
|
| 457 |
+
datagen.flow(x_train_combined, y_train_encoded_combined, batch_size=64),
|
| 458 |
+
epochs=20,
|
| 459 |
+
validation_data=(x_test, y_test_encoded),
|
| 460 |
+
verbose=1,
|
| 461 |
+
callbacks=[early_stopping, reduce_lr]
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
# حفظ النموذج باستخدام الدالة المعرفة
|
| 465 |
+
model.save('texture_transformed_model.h5')
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
# In[47]:
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
model = load_model('texture_transformed_model.h5')
|
| 472 |
+
|
| 473 |
+
# تقييم النموذج على بيانات الاختبار
|
| 474 |
+
loss, accuracy, precision, recall = model.evaluate(x_test, y_test_encoded, verbose=1)
|
| 475 |
+
print(f"Test Accuracy: {accuracy * 100:.2f}%")
|
| 476 |
+
print(f"Test Precision: {precision * 100:.2f}%")
|
| 477 |
+
print(f"Test Recall: {recall * 100:.2f}%")
|
| 478 |
+
print(f"Test Loss: {loss * 100:.4f}%")
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
# In[51]:
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
model = load_model('texture_transformed_model.h5')
|
| 485 |
+
|
| 486 |
+
# تقييم النموذج لبناء المقاييس
|
| 487 |
+
initial_evaluation = model.evaluate(x_test, y_test_encoded, verbose=1)
|
| 488 |
+
print(f"Initial evaluation - Loss: {initial_evaluation[0]}, Accuracy: {initial_evaluation[1]}")
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
# In[62]:
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
# تحميل النموذج المحول
|
| 496 |
+
model = load_model('texture_transformed_model.h5')
|
| 497 |
+
|
| 498 |
+
# تحديد عدد الصور للعرض
|
| 499 |
+
num_samples = 6
|
| 500 |
+
random_indices = np.random.choice(len(x_train), num_samples, replace=False)
|
| 501 |
+
|
| 502 |
+
plt.figure(figsize=(15, 6))
|
| 503 |
+
for i, idx in enumerate(random_indices):
|
| 504 |
+
# عرض الصور الأصلية
|
| 505 |
+
plt.subplot(2, num_samples, i + 1)
|
| 506 |
+
plt.imshow(x_train[idx].astype('uint8'))
|
| 507 |
+
plt.title(f'Original {y_train[idx][0]}')
|
| 508 |
+
plt.axis('off')
|
| 509 |
+
|
| 510 |
+
# عرض الصور المسممة
|
| 511 |
+
plt.subplot(2, num_samples, i + 1 + num_samples)
|
| 512 |
+
plt.imshow(x_poisoned[idx].astype('uint8'))
|
| 513 |
+
plt.title(f'Poisoned {y_train[idx][0]}')
|
| 514 |
+
plt.axis('off')
|
| 515 |
+
|
| 516 |
+
plt.tight_layout()
|
| 517 |
+
plt.show()
|
| 518 |
+
|
| 519 |
+
|
| 520 |
+
# In[48]:
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
model = load_model('texture_transformed_model.h5')
|
| 524 |
+
|
| 525 |
+
# عرض الصور الأصلية والمسممة للمقارنة
|
| 526 |
+
num_samples = 6
|
| 527 |
+
random_indices = np.random.choice(len(x_train), num_samples, replace=False)
|
| 528 |
+
|
| 529 |
+
plt.figure(figsize=(15, 6))
|
| 530 |
+
for i, idx in enumerate(random_indices):
|
| 531 |
+
plt.subplot(2, num_samples, i + 1)
|
| 532 |
+
plt.imshow(x_train[idx].astype('uint8'))
|
| 533 |
+
plt.title(f'Original {y_train[idx][0]}')
|
| 534 |
+
plt.axis('off')
|
| 535 |
+
|
| 536 |
+
plt.subplot(2, num_samples, i + 1 + num_samples)
|
| 537 |
+
plt.imshow(x_poisoned[idx].astype('uint8'))
|
| 538 |
+
plt.title(f'Poisoned {y_train[idx][0]}')
|
| 539 |
+
plt.axis('off')
|
| 540 |
+
plt.show()
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
# In[49]:
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
model = load_model('texture_transformed_model.h5')
|
| 547 |
+
|
| 548 |
+
plt.tight_layout()
|
| 549 |
+
plt.show()
|
| 550 |
+
|
| 551 |
+
# عرض النتائج من التدريب
|
| 552 |
+
plt.figure(figsize=(12, 6))
|
| 553 |
+
plt.subplot(2, 2, 1)
|
| 554 |
+
plt.plot(history.history['accuracy'], label='Training Accuracy')
|
| 555 |
+
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
|
| 556 |
+
plt.title('Accuracy over epochs')
|
| 557 |
+
plt.legend()
|
| 558 |
+
|
| 559 |
+
plt.subplot(2, 2, 2)
|
| 560 |
+
plt.plot(history.history['loss'], label='Training Loss')
|
| 561 |
+
plt.plot(history.history['val_loss'], label='Validation Loss')
|
| 562 |
+
plt.title('Loss over epochs')
|
| 563 |
+
plt.legend()
|
| 564 |
+
|
| 565 |
+
plt.subplot(2, 2, 3)
|
| 566 |
+
plt.plot(history.history['precision'], label='Training Precision')
|
| 567 |
+
plt.plot(history.history['val_precision'], label='Validation Precision')
|
| 568 |
+
plt.title('Precision over epochs')
|
| 569 |
+
plt.legend()
|
| 570 |
+
|
| 571 |
+
plt.subplot(2, 2, 4)
|
| 572 |
+
plt.plot(history.history['recall'], label='Training Recall')
|
| 573 |
+
plt.plot(history.history['val_recall'], label='Validation Recall')
|
| 574 |
+
plt.title('Recall over epochs')
|
| 575 |
+
plt.legend()
|
| 576 |
+
|
| 577 |
+
plt.tight_layout()
|
| 578 |
+
plt.show()
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
# In[64]:
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
| 585 |
+
from scipy.ndimage import gaussian_filter, laplace
|
| 586 |
+
import tensorflow as tf
|
| 587 |
+
|
| 588 |
+
# Load the trained model
|
| 589 |
+
model = load_model('texture_transformed_model.h5')
|
| 590 |
+
|
| 591 |
+
# Ensure the model is compiled with metrics
|
| 592 |
+
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
|
| 593 |
+
|
| 594 |
+
# Function for texture transformations with reduced effects
|
| 595 |
+
def apply_texture_transformations(image):
|
| 596 |
+
blurred_image = gaussian_filter(image, sigma=0.05) # Reduce sigma to minimum
|
| 597 |
+
laplacian_image = laplace(blurred_image, mode='reflect') / 100.0 # Significantly reduce laplace effect
|
| 598 |
+
noise = np.random.normal(0, 0.001, image.shape) * 255 # Significantly reduce noise
|
| 599 |
+
noisy_image = image + noise
|
| 600 |
+
transformed_image = 0.98 * image + 0.01 * laplacian_image + 0.01 * noisy_image # Minimize transformation effects
|
| 601 |
+
transformed_image = np.clip(transformed_image, 0, 255).astype(np.uint8)
|
| 602 |
+
return transformed_image
|
| 603 |
+
|
| 604 |
+
# Function to resize image while maintaining quality using Bicubic Interpolation
|
| 605 |
+
def resize_image_with_quality(image, target_size):
|
| 606 |
+
resized_image = cv2.resize(image, target_size, interpolation=cv2.INTER_CUBIC)
|
| 607 |
+
return resized_image
|
| 608 |
+
|
| 609 |
+
# Function to load and process external images while retaining original size
|
| 610 |
+
def load_and_preprocess_image(image_path):
|
| 611 |
+
if not os.path.exists(image_path):
|
| 612 |
+
print(f"File not found: {image_path}")
|
| 613 |
+
return None
|
| 614 |
+
img = load_img(image_path)
|
| 615 |
+
img_array = img_to_array(img)
|
| 616 |
+
original_shape = img_array.shape[:2] # Save original dimensions without channels
|
| 617 |
+
resized_image = resize_image_with_quality(img_array, (224, 224)) # Resize to larger size to retain details
|
| 618 |
+
resized_image = resized_image.astype('float32') / 255.0 # Normalize the image
|
| 619 |
+
return resized_image, original_shape
|
| 620 |
+
|
| 621 |
+
# Paths to external images
|
| 622 |
+
image_paths = [
|
| 623 |
+
r'C:\Users\Lenovo\Desktop\jaguar.jpeg',
|
| 624 |
+
r'C:\Users\Lenovo\Desktop\images.jpeg',
|
| 625 |
+
r'C:\Users\Lenovo\Desktop\tree.jpeg'
|
| 626 |
+
]
|
| 627 |
+
|
| 628 |
+
# Load and process external images while retaining original dimensions
|
| 629 |
+
external_images_info = [load_and_preprocess_image(image_path) for image_path in image_paths]
|
| 630 |
+
external_images_info = [info for info in external_images_info if info is not None]
|
| 631 |
+
|
| 632 |
+
# Check if any images were loaded
|
| 633 |
+
if not external_images_info:
|
| 634 |
+
print("No images were loaded. Please check your image paths.")
|
| 635 |
+
else:
|
| 636 |
+
external_images, original_shapes = zip(*external_images_info)
|
| 637 |
+
external_images = np.array(external_images)
|
| 638 |
+
|
| 639 |
+
# Apply texture transformations
|
| 640 |
+
external_images_transformed = np.array([apply_texture_transformations(img * 255) / 255.0 for img in external_images])
|
| 641 |
+
|
| 642 |
+
# Resize transformed images to their original size
|
| 643 |
+
external_images_transformed_resized = []
|
| 644 |
+
for i, transformed_image in enumerate(external_images_transformed):
|
| 645 |
+
original_shape = original_shapes[i] # Extract original dimensions
|
| 646 |
+
transformed_resized = resize_image_with_quality(transformed_image * 255, original_shape[::-1]) # Note CV2 dimensions (width x height)
|
| 647 |
+
external_images_transformed_resized.append(transformed_resized)
|
| 648 |
+
|
| 649 |
+
# Define the prediction function
|
| 650 |
+
@tf.function
|
| 651 |
+
def model_predict(model, input_data):
|
| 652 |
+
return model(input_data, training=False)
|
| 653 |
+
|
| 654 |
+
# Conduct predictions
|
| 655 |
+
predictions = model_predict(model, external_images_transformed)
|
| 656 |
+
|
| 657 |
+
# Display results
|
| 658 |
+
for i, image_path in enumerate(image_paths):
|
| 659 |
+
if os.path.exists(image_path):
|
| 660 |
+
plt.figure(figsize=(10, 5))
|
| 661 |
+
|
| 662 |
+
# Display the original image
|
| 663 |
+
plt.subplot(1, 2, 1)
|
| 664 |
+
original_img = load_img(image_path)
|
| 665 |
+
plt.imshow(original_img)
|
| 666 |
+
plt.title('Original Image')
|
| 667 |
+
plt.axis('off')
|
| 668 |
+
|
| 669 |
+
# Display the poisoned image
|
| 670 |
+
plt.subplot(1, 2, 2)
|
| 671 |
+
poisoned_img = external_images_transformed_resized[i]
|
| 672 |
+
plt.imshow(poisoned_img.astype(np.uint8))
|
| 673 |
+
plt.title('Poisoned Image')
|
| 674 |
+
plt.axis('off')
|
| 675 |
+
|
| 676 |
+
plt.suptitle(f'Prediction: {np.argmax(predictions[i])}')
|
| 677 |
+
plt.show()
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
# In[63]:
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
| 684 |
+
from scipy.ndimage import gaussian_filter, laplace
|
| 685 |
+
|
| 686 |
+
# تحميل النموذج المدرب
|
| 687 |
+
model = load_model('texture_transformed_model.h5')
|
| 688 |
+
|
| 689 |
+
# دالة لتحويلات النسيج مع تقليل التأثيرات
|
| 690 |
+
def apply_texture_transformations(image):
|
| 691 |
+
blurred_image = gaussian_filter(image, sigma=0.05)
|
| 692 |
+
laplacian_image = laplace(blurred_image, mode='reflect') / 100.0
|
| 693 |
+
noise = np.random.normal(0, 0.001, image.shape) * 255
|
| 694 |
+
noisy_image = image + noise
|
| 695 |
+
transformed_image = 0.98 * image + 0.01 * laplacian_image + 0.01 * noisy_image
|
| 696 |
+
transformed_image = np.clip(transformed_image, 0, 255).astype(np.uint8)
|
| 697 |
+
return transformed_image
|
| 698 |
+
|
| 699 |
+
# دالة لإعادة تشكيل الصورة مع الحفاظ على الجودة باستخدام Bicubic Interpolation
|
| 700 |
+
def resize_image_with_quality(image, target_size):
|
| 701 |
+
resized_image = cv2.resize(image, target_size, interpolation=cv2.INTER_CUBIC)
|
| 702 |
+
return resized_image
|
| 703 |
+
|
| 704 |
+
# دالة لتحميل ومعالجة الصور الخارجية مع الاحتفاظ بحجمها الأصلي
|
| 705 |
+
def load_and_preprocess_image(image_path):
|
| 706 |
+
if not os.path.exists(image_path):
|
| 707 |
+
print(f"File not found: {image_path}")
|
| 708 |
+
return None
|
| 709 |
+
img = load_img(image_path)
|
| 710 |
+
img_array = img_to_array(img)
|
| 711 |
+
original_shape = img_array.shape[:2]
|
| 712 |
+
resized_image = resize_image_with_quality(img_array, (224, 224))
|
| 713 |
+
resized_image = resized_image.astype('float32') / 255.0
|
| 714 |
+
return resized_image, original_shape
|
| 715 |
+
|
| 716 |
+
# مسارات الصور الخارجية
|
| 717 |
+
image_paths = [
|
| 718 |
+
r'C:\Users\Lenovo\Desktop\jaguar.jpeg',
|
| 719 |
+
r'C:\Users\Lenovo\Desktop\images.jpeg',
|
| 720 |
+
r'C:\Users\Lenovo\Desktop\tree.jpeg'
|
| 721 |
+
]
|
| 722 |
+
|
| 723 |
+
# تحميل ومعالجة الصور الخارجية مع الحفاظ على الأبعاد الأصلية
|
| 724 |
+
external_images_info = [load_and_preprocess_image(image_path) for image_path in image_paths]
|
| 725 |
+
external_images_info = [info for info in external_images_info if info is not None]
|
| 726 |
+
|
| 727 |
+
# التحقق مما إذا كانت هناك صور تم تحميلها
|
| 728 |
+
if not external_images_info:
|
| 729 |
+
print("No images were loaded. Please check your image paths.")
|
| 730 |
+
else:
|
| 731 |
+
external_images, original_shapes = zip(*external_images_info)
|
| 732 |
+
external_images = np.array(external_images)
|
| 733 |
+
|
| 734 |
+
# تطبيق التحويلات الملمسية
|
| 735 |
+
external_images_transformed = np.array([apply_texture_transformations(img * 255) / 255.0 for img in external_images])
|
| 736 |
+
|
| 737 |
+
# إعادة تشكيل الصور المسممة إلى حجمها الأصلي
|
| 738 |
+
external_images_transformed_resized = []
|
| 739 |
+
for i, transformed_image in enumerate(external_images_transformed):
|
| 740 |
+
original_shape = original_shapes[i]
|
| 741 |
+
transformed_resized = resize_image_with_quality(transformed_image * 255, original_shape[::-1])
|
| 742 |
+
external_images_transformed_resized.append(transformed_resized)
|
| 743 |
+
|
| 744 |
+
# إجراء التنبؤ
|
| 745 |
+
predictions = model.predict(external_images_transformed)
|
| 746 |
+
|
| 747 |
+
# عرض النتائج
|
| 748 |
+
for i, image_path in enumerate(image_paths):
|
| 749 |
+
if os.path.exists(image_path):
|
| 750 |
+
plt.figure(figsize=(10, 5))
|
| 751 |
+
|
| 752 |
+
# عرض الصورة الأصلية
|
| 753 |
+
plt.subplot(1, 2, 1)
|
| 754 |
+
original_img = load_img(image_path)
|
| 755 |
+
plt.imshow(original_img)
|
| 756 |
+
plt.title('Original Image')
|
| 757 |
+
plt.axis('off')
|
| 758 |
+
|
| 759 |
+
# عرض الصورة المسممة
|
| 760 |
+
plt.subplot(1, 2, 2)
|
| 761 |
+
poisoned_img = external_images_transformed_resized[i]
|
| 762 |
+
plt.imshow(poisoned_img.astype(np.uint8))
|
| 763 |
+
plt.title('Poisoned Image')
|
| 764 |
+
plt.axis('off')
|
| 765 |
+
|
| 766 |
+
plt.suptitle(f'Prediction: {np.argmax(predictions[i])}')
|
| 767 |
+
plt.show()
|
| 768 |
+
|
| 769 |
+
|
| 770 |
+
# In[ ]:
|
| 771 |
+
|
| 772 |
+
|
| 773 |
+
from flask import Flask, request, jsonify
|
| 774 |
+
import numpy as np
|
| 775 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
| 776 |
+
from tensorflow.keras.models import load_model
|
| 777 |
+
import cv2
|
| 778 |
+
from scipy.ndimage import gaussian_filter, laplace
|
| 779 |
+
|
| 780 |
+
app = Flask(__name__)
|
| 781 |
+
|
| 782 |
+
# Load your model
|
| 783 |
+
model = load_model('texture_transformed_model.h5')
|
| 784 |
+
|
| 785 |
+
# Define functions for image processing
|
| 786 |
+
def apply_texture_transformations(image):
|
| 787 |
+
# Your texture transformation function here
|
| 788 |
+
pass
|
| 789 |
+
|
| 790 |
+
def resize_image_with_quality(image, target_size):
|
| 791 |
+
# Your image resizing function here
|
| 792 |
+
pass
|
| 793 |
+
|
| 794 |
+
def load_and_preprocess_image(image_path):
|
| 795 |
+
# Your image loading and preprocessing function here
|
| 796 |
+
pass
|
| 797 |
+
|
| 798 |
+
@app.route('/predict', methods=['POST'])
|
| 799 |
+
def predict():
|
| 800 |
+
if 'image' not in request.files:
|
| 801 |
+
return jsonify({'error': 'No file part in the request'}), 400
|
| 802 |
+
|
| 803 |
+
file = request.files['image']
|
| 804 |
+
image_path = f'/tmp/{file.filename}'
|
| 805 |
+
file.save(image_path)
|
| 806 |
+
|
| 807 |
+
# Process the uploaded image
|
| 808 |
+
image, _ = load_and_preprocess_image(image_path)
|
| 809 |
+
transformed_image = apply_texture_transformations(image)
|
| 810 |
+
|
| 811 |
+
# Make predictions
|
| 812 |
+
prediction = model.predict(np.expand_dims(transformed_image, axis=0))
|
| 813 |
+
|
| 814 |
+
# Decode prediction (assuming your model outputs categorical predictions)
|
| 815 |
+
predicted_class = np.argmax(prediction)
|
| 816 |
+
|
| 817 |
+
# Return the result
|
| 818 |
+
return jsonify({'prediction': predicted_class})
|
| 819 |
+
|
| 820 |
+
if __name__ == '__main__':
|
| 821 |
+
app.run(debug=True)
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
# In[ ]:
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
python app.py
|
| 828 |
+
#http://127.0.0.1:5000/predict
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
# In[ ]:
|
| 832 |
+
|
| 833 |
+
|
| 834 |
+
|
| 835 |
+
|