Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.20 +/- 0.15
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2cb772c763ed66faf5ef053cd826cd1c0eefaeee2131520e8e013f5489ac5a6
|
3 |
+
size 108215
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7dea6a3d7a30>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7dea6a3e0d80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1699696958537530879,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+n6KPrE0EzwL6uU+yYDSPiz68T7J4kS9+n6KPrE0EzwL6uU++n6KPrE0EzwL6uU+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVyrhvTU2nz9ETJU//pUqP15kGD8ZRoS/HAoiv0llar+0/gE/gY+HPyGFn7+d4tc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6foo+sTQTPAvq5T5xK/g+OZ4wOqkbxj7JgNI+LPrxPsniRL1zNAG+j5vZPxe9wb/6foo+sTQTPAvq5T5xK/g+OZ4wOqkbxj76foo+sTQTPAvq5T5xK/g+OZ4wOqkbxj6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.2705 0.00898473 0.44905123]\n [ 0.4111388 0.47261178 -0.04806784]\n [ 0.2705 0.00898473 0.44905123]\n [ 0.2705 0.00898473 0.44905123]]",
|
34 |
+
"desired_goal": "[[-0.10994404 1.2438418 1.16639 ]\n [ 0.6663512 0.5952815 -1.0333892 ]\n [-0.63296676 -0.915608 0.5077927 ]\n [ 1.0590669 -1.2462503 1.6866032 ]]",
|
35 |
+
"observation": "[[ 2.7050000e-01 8.9847306e-03 4.4905123e-01 4.8470643e-01\n 6.7374442e-04 3.8692978e-01]\n [ 4.1113880e-01 4.7261178e-01 -4.8067842e-02 -1.2617664e-01\n 1.7000598e+00 -1.5135831e+00]\n [ 2.7050000e-01 8.9847306e-03 4.4905123e-01 4.8470643e-01\n 6.7374442e-04 3.8692978e-01]\n [ 2.7050000e-01 8.9847306e-03 4.4905123e-01 4.8470643e-01\n 6.7374442e-04 3.8692978e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGY0VPn5Q1L0hei0+SsOpvCoU/r1jhZc+dq/QvWKQXT0JMac9jTfdvSeLpT1AipE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.14604606 -0.10366915 0.1694112 ]\n [-0.020723 -0.1240619 0.29593953]\n [-0.10189717 0.05409277 0.0816365 ]\n [-0.10801611 0.08083182 0.2842579 ]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9OBmPHT7VKMAWyUSwOMAXSUR0Cmzt5Jbt7bdX2UKGgGR7+z/GVAzHjqaAdLAmgIR0Cmz8DZL7GedX2UKGgGR7/YReTmnwXqaAdLBGgIR0Cmz1bwSamXdX2UKGgGR7/RGahHskY5aAdLA2gIR0Cm0DGDL8rJdX2UKGgGR7/KEEkjX4CZaAdLA2gIR0Cmzu3JxNqQdX2UKGgGR7+4N6PbO/tZaAdLAmgIR0Cmz1+CsfaIdX2UKGgGR7/AIhyKekHlaAdLAmgIR0Cm0DnkkrwwdX2UKGgGR7/ORJ2+wkgPaAdLA2gIR0Cmz85ULlV+dX2UKGgGR7/Dev6j3225aAdLAmgIR0CmzvZjYqXodX2UKGgGR7/ERxtHhCMQaAdLAmgIR0Cmz2sNUfgadX2UKGgGR7+yuU2UB4lhaAdLAmgIR0Cm0EWe6I3zdX2UKGgGR7+/7/GVAzHkaAdLAmgIR0CmzwJI+W4WdX2UKGgGR7/V7tiQT238aAdLBGgIR0Cmz+REORT1dX2UKGgGR7/QgOz6ab4KaAdLA2gIR0Cmz3n6MzdldX2UKGgGR7/CcjJMg2ZRaAdLAmgIR0CmzwyNGViXdX2UKGgGR7/IFxGUfPonaAdLA2gIR0Cm0FTI/7iydX2UKGgGR7/C9hZyMkyDaAdLAmgIR0CmzxhPbfxddX2UKGgGR7/Hm5lOGj9GaAdLA2gIR0Cmz4rbQC0XdX2UKGgGR7/KcWj4593KaAdLA2gIR0Cm0GVYZEUkdX2UKGgGR7/VTdtVJcxCaAdLBGgIR0Cmz/ot+TePdX2UKGgGR7/KBT4tYjjaaAdLA2gIR0CmzyaltTDPdX2UKGgGR7+/FcY64lQeaAdLAmgIR0Cm0ALuYx+KdX2UKGgGR7/OF6iTMaCMaAdLA2gIR0Cmz5jOkcjrdX2UKGgGR7/JXIU8FINFaAdLA2gIR0Cm0HWdupCKdX2UKGgGR7+2nAIppeu3aAdLAmgIR0Cm0A5nL7oCdX2UKGgGR7/I4JeE7GNraAdLA2gIR0Cmzzb4SHuadX2UKGgGR7++pjtoi9qUaAdLAmgIR0Cm0H7n5i3HdX2UKGgGR7/QA57w8W9EaAdLA2gIR0Cmz6lspG4JdX2UKGgGR7+8IPbwjMV2aAdLAmgIR0Cmz0AZ0jkddX2UKGgGR7/A0bcXWOIZaAdLAmgIR0Cm0IgyEcsEdX2UKGgGR7/SF10T101ZaAdLA2gIR0Cm0Byup0fYdX2UKGgGR7/KvV3EAHVxaAdLA2gIR0Cmz7jHOryUdX2UKGgGR7/BNyHVPN3XaAdLAmgIR0Cmz0tcW0qpdX2UKGgGR7/Lhisny/bkaAdLA2gIR0Cm0JeH8CPqdX2UKGgGR7/QjoIOYplSaAdLA2gIR0Cm0CxQBPsSdX2UKGgGR7/BLDhtLteEaAdLAmgIR0Cmz1R6F/QTdX2UKGgGR7/RbHIZIg/1aAdLA2gIR0Cmz8adc0LudX2UKGgGR7/KGcnVoYelaAdLA2gIR0Cm0DxKHwgDdX2UKGgGR7/Ro99tuUD/aAdLA2gIR0Cmz2RZ2ZAqdX2UKGgGR7/X6shgVoHtaAdLBGgIR0Cm0KxxkupTdX2UKGgGR7/R+XZ5AyEdaAdLA2gIR0Cmz9ZqmCRPdX2UKGgGR7++oqCpWFN+aAdLAmgIR0Cmz2zqB3A3dX2UKGgGR7/M40/GEPDpaAdLA2gIR0Cm0Ek7GNrCdX2UKGgGR7+zBuXNTtLMaAdLAmgIR0Cmz97w8W9EdX2UKGgGR7/Nw0fozN2UaAdLA2gIR0Cm0LmK64DtdX2UKGgGR7/GaJhvze41aAdLA2gIR0Cmz3z6SDAadX2UKGgGR7+7CQ9zOopAaAdLAmgIR0Cm0MTlT3qSdX2UKGgGR7/LtCRfWtlqaAdLA2gIR0Cm0FlvAGjcdX2UKGgGR79zG5tm+TNdaAdLAWgIR0Cm0F4xDb8FdX2UKGgGR7/Zx7zCk43naAdLBGgIR0Cmz/QOnVG1dX2UKGgGR7+8rjHXEqDsaAdLAmgIR0Cm0M6t9x6wdX2UKGgGR7+RBzFMqSX/aAdLAWgIR0Cmz/iNS619dX2UKGgGR7/PyWAwwj+raAdLA2gIR0Cmz4s8YAKfdX2UKGgGR7/DtYSxqwhXaAdLAmgIR0Cm0Geu3c59dX2UKGgGR7+zPv8ZUDMeaAdLAmgIR0Cm0AO6NEPUdX2UKGgGR7+xSCOFQEZBaAdLAmgIR0Cmz5Z3s5XEdX2UKGgGR7/VsRg7YChfaAdLA2gIR0Cm0N5Xlr/LdX2UKGgGR7/DbQC0WuYAaAdLAmgIR0Cm0HLR0EHMdX2UKGgGR7/Lqjafzz3AaAdLA2gIR0Cm0BDtoi9qdX2UKGgGR7/FYqXnhbW3aAdLA2gIR0Cmz6O938oAdX2UKGgGR7/MI55qubI+aAdLA2gIR0Cm0IA4XGfgdX2UKGgGR7/P00WM0gr6aAdLBGgIR0Cm0PLmhdt3dX2UKGgGR7+3ltCRfWtmaAdLAmgIR0Cm0B0SAYpEdX2UKGgGR7+0SrYGt6omaAdLAmgIR0Cmz6/zBhx6dX2UKGgGR7/FNSIgvDgqaAdLAmgIR0Cm0Iw3PzFudX2UKGgGR7+8Uj9n9NvgaAdLAmgIR0Cm0CXw1BMSdX2UKGgGR7/UYao/A0sOaAdLA2gIR0Cm0QA/s3Q2dX2UKGgGR7/PqwhW5paiaAdLA2gIR0Cm0Jt7SiM6dX2UKGgGR7/YIK+i8FpxaAdLBGgIR0Cmz8TPSlWPdX2UKGgGR7+8JfICEHt4aAdLAmgIR0Cm0Q9hZyMldX2UKGgGR7/FoKUmlZX/aAdLA2gIR0Cm0Dk25xzadX2UKGgGR7/R3+dbxEv1aAdLA2gIR0Cm0Kxh+fAcdX2UKGgGR7/IUY8+zMRpaAdLA2gIR0Cm0RzposZpdX2UKGgGR7/edilSCOFQaAdLBGgIR0Cmz9m1hLGrdX2UKGgGR7/B7O3UhFEzaAdLAmgIR0Cm0LXwsoUjdX2UKGgGR7/V3AEdNnGsaAdLBGgIR0Cm0EvikwevdX2UKGgGR7/Qu4gA6uGLaAdLA2gIR0Cmz+lMAWBSdX2UKGgGR7/W5eqrBCUpaAdLBGgIR0Cm0TFpoK2KdX2UKGgGR7/QLTx5LRKIaAdLA2gIR0Cm0Ft4qwyJdX2UKGgGR7/a/Lkjopx4aAdLBGgIR0Cm0MpsoDxLdX2UKGgGR7/GwpON5t3waAdLAmgIR0Cmz/Jxeb/fdX2UKGgGR7+/A31jAi3YaAdLAmgIR0Cm0TqW1MM7dX2UKGgGR7/LvlU6xPfsaAdLA2gIR0Cm0GqZ+hGpdX2UKGgGR7/QAYHgP3BYaAdLA2gIR0Cm0Nkxh2GJdX2UKGgGR7/O+u/1xsEaaAdLA2gIR0Cm0AFTNt65dX2UKGgGR7/EZrHlwLmZaAdLA2gIR0Cm0UlGPPszdX2UKGgGR7/EH8jzI3iraAdLAmgIR0Cm0OHwPRRedX2UKGgGR7/VvQF9roGIaAdLA2gIR0Cm0HfdqL0jdX2UKGgGR7/BsTnJT2nLaAdLAmgIR0Cm0AqT8pCsdX2UKGgGR7+z71qWTot+aAdLAmgIR0Cm0VLE9+w1dX2UKGgGR7++7+T/yXlbaAdLAmgIR0Cm0O336AOKdX2UKGgGR7/KeEIw/PgOaAdLA2gIR0Cm0IiEQGwBdX2UKGgGR7/Gdq+Jxeb/aAdLA2gIR0Cm0BtP557gdX2UKGgGR7/V8rZrYXfqaAdLA2gIR0Cm0WNA1NxmdX2UKGgGR7+7rTpgTh5xaAdLAmgIR0Cm0PeyAxzrdX2UKGgGR7+kFMZgogFHaAdLAWgIR0Cm0CAggX/HdX2UKGgGR7+kgwGnn+yaaAdLAWgIR0Cm0PxxT850dX2UKGgGR7/BwKjSG8EnaAdLAmgIR0Cm0Wyt3fQ8dX2UKGgGR7/G3w1BMSK4aAdLA2gIR0Cm0Ja86FM7dX2UKGgGR7+/hddE9dNWaAdLAmgIR0Cm0ClTvRZ2dWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6114ea885ce46c678ee4b04bbef8ace380e958e9db67434a3fb06e13b13f253c
|
3 |
+
size 45167
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ee82b7ec9d6972401a6c07a08c0f892cb2df3bfaae4539b72aa4a75eccab454
|
3 |
+
size 46447
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7dea6a3d7a30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dea6a3e0d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699696958537530879, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+n6KPrE0EzwL6uU+yYDSPiz68T7J4kS9+n6KPrE0EzwL6uU++n6KPrE0EzwL6uU+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVyrhvTU2nz9ETJU//pUqP15kGD8ZRoS/HAoiv0llar+0/gE/gY+HPyGFn7+d4tc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6foo+sTQTPAvq5T5xK/g+OZ4wOqkbxj7JgNI+LPrxPsniRL1zNAG+j5vZPxe9wb/6foo+sTQTPAvq5T5xK/g+OZ4wOqkbxj76foo+sTQTPAvq5T5xK/g+OZ4wOqkbxj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.2705 0.00898473 0.44905123]\n [ 0.4111388 0.47261178 -0.04806784]\n [ 0.2705 0.00898473 0.44905123]\n [ 0.2705 0.00898473 0.44905123]]", "desired_goal": "[[-0.10994404 1.2438418 1.16639 ]\n [ 0.6663512 0.5952815 -1.0333892 ]\n [-0.63296676 -0.915608 0.5077927 ]\n [ 1.0590669 -1.2462503 1.6866032 ]]", "observation": "[[ 2.7050000e-01 8.9847306e-03 4.4905123e-01 4.8470643e-01\n 6.7374442e-04 3.8692978e-01]\n [ 4.1113880e-01 4.7261178e-01 -4.8067842e-02 -1.2617664e-01\n 1.7000598e+00 -1.5135831e+00]\n [ 2.7050000e-01 8.9847306e-03 4.4905123e-01 4.8470643e-01\n 6.7374442e-04 3.8692978e-01]\n [ 2.7050000e-01 8.9847306e-03 4.4905123e-01 4.8470643e-01\n 6.7374442e-04 3.8692978e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGY0VPn5Q1L0hei0+SsOpvCoU/r1jhZc+dq/QvWKQXT0JMac9jTfdvSeLpT1AipE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14604606 -0.10366915 0.1694112 ]\n [-0.020723 -0.1240619 0.29593953]\n [-0.10189717 0.05409277 0.0816365 ]\n [-0.10801611 0.08083182 0.2842579 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9OBmPHT7VKMAWyUSwOMAXSUR0Cmzt5Jbt7bdX2UKGgGR7+z/GVAzHjqaAdLAmgIR0Cmz8DZL7GedX2UKGgGR7/YReTmnwXqaAdLBGgIR0Cmz1bwSamXdX2UKGgGR7/RGahHskY5aAdLA2gIR0Cm0DGDL8rJdX2UKGgGR7/KEEkjX4CZaAdLA2gIR0Cmzu3JxNqQdX2UKGgGR7+4N6PbO/tZaAdLAmgIR0Cmz1+CsfaIdX2UKGgGR7/AIhyKekHlaAdLAmgIR0Cm0DnkkrwwdX2UKGgGR7/ORJ2+wkgPaAdLA2gIR0Cmz85ULlV+dX2UKGgGR7/Dev6j3225aAdLAmgIR0CmzvZjYqXodX2UKGgGR7/ERxtHhCMQaAdLAmgIR0Cmz2sNUfgadX2UKGgGR7+yuU2UB4lhaAdLAmgIR0Cm0EWe6I3zdX2UKGgGR7+/7/GVAzHkaAdLAmgIR0CmzwJI+W4WdX2UKGgGR7/V7tiQT238aAdLBGgIR0Cmz+REORT1dX2UKGgGR7/QgOz6ab4KaAdLA2gIR0Cmz3n6MzdldX2UKGgGR7/CcjJMg2ZRaAdLAmgIR0CmzwyNGViXdX2UKGgGR7/IFxGUfPonaAdLA2gIR0Cm0FTI/7iydX2UKGgGR7/C9hZyMkyDaAdLAmgIR0CmzxhPbfxddX2UKGgGR7/Hm5lOGj9GaAdLA2gIR0Cmz4rbQC0XdX2UKGgGR7/KcWj4593KaAdLA2gIR0Cm0GVYZEUkdX2UKGgGR7/VTdtVJcxCaAdLBGgIR0Cmz/ot+TePdX2UKGgGR7/KBT4tYjjaaAdLA2gIR0CmzyaltTDPdX2UKGgGR7+/FcY64lQeaAdLAmgIR0Cm0ALuYx+KdX2UKGgGR7/OF6iTMaCMaAdLA2gIR0Cmz5jOkcjrdX2UKGgGR7/JXIU8FINFaAdLA2gIR0Cm0HWdupCKdX2UKGgGR7+2nAIppeu3aAdLAmgIR0Cm0A5nL7oCdX2UKGgGR7/I4JeE7GNraAdLA2gIR0Cmzzb4SHuadX2UKGgGR7++pjtoi9qUaAdLAmgIR0Cm0H7n5i3HdX2UKGgGR7/QA57w8W9EaAdLA2gIR0Cmz6lspG4JdX2UKGgGR7+8IPbwjMV2aAdLAmgIR0Cmz0AZ0jkddX2UKGgGR7/A0bcXWOIZaAdLAmgIR0Cm0IgyEcsEdX2UKGgGR7/SF10T101ZaAdLA2gIR0Cm0Byup0fYdX2UKGgGR7/KvV3EAHVxaAdLA2gIR0Cmz7jHOryUdX2UKGgGR7/BNyHVPN3XaAdLAmgIR0Cmz0tcW0qpdX2UKGgGR7/Lhisny/bkaAdLA2gIR0Cm0JeH8CPqdX2UKGgGR7/QjoIOYplSaAdLA2gIR0Cm0CxQBPsSdX2UKGgGR7/BLDhtLteEaAdLAmgIR0Cmz1R6F/QTdX2UKGgGR7/RbHIZIg/1aAdLA2gIR0Cmz8adc0LudX2UKGgGR7/KGcnVoYelaAdLA2gIR0Cm0DxKHwgDdX2UKGgGR7/Ro99tuUD/aAdLA2gIR0Cmz2RZ2ZAqdX2UKGgGR7/X6shgVoHtaAdLBGgIR0Cm0KxxkupTdX2UKGgGR7/R+XZ5AyEdaAdLA2gIR0Cmz9ZqmCRPdX2UKGgGR7++oqCpWFN+aAdLAmgIR0Cmz2zqB3A3dX2UKGgGR7/M40/GEPDpaAdLA2gIR0Cm0Ek7GNrCdX2UKGgGR7+zBuXNTtLMaAdLAmgIR0Cmz97w8W9EdX2UKGgGR7/Nw0fozN2UaAdLA2gIR0Cm0LmK64DtdX2UKGgGR7/GaJhvze41aAdLA2gIR0Cmz3z6SDAadX2UKGgGR7+7CQ9zOopAaAdLAmgIR0Cm0MTlT3qSdX2UKGgGR7/LtCRfWtlqaAdLA2gIR0Cm0FlvAGjcdX2UKGgGR79zG5tm+TNdaAdLAWgIR0Cm0F4xDb8FdX2UKGgGR7/Zx7zCk43naAdLBGgIR0Cmz/QOnVG1dX2UKGgGR7+8rjHXEqDsaAdLAmgIR0Cm0M6t9x6wdX2UKGgGR7+RBzFMqSX/aAdLAWgIR0Cmz/iNS619dX2UKGgGR7/PyWAwwj+raAdLA2gIR0Cmz4s8YAKfdX2UKGgGR7/DtYSxqwhXaAdLAmgIR0Cm0Geu3c59dX2UKGgGR7+zPv8ZUDMeaAdLAmgIR0Cm0AO6NEPUdX2UKGgGR7+xSCOFQEZBaAdLAmgIR0Cmz5Z3s5XEdX2UKGgGR7/VsRg7YChfaAdLA2gIR0Cm0N5Xlr/LdX2UKGgGR7/DbQC0WuYAaAdLAmgIR0Cm0HLR0EHMdX2UKGgGR7/Lqjafzz3AaAdLA2gIR0Cm0BDtoi9qdX2UKGgGR7/FYqXnhbW3aAdLA2gIR0Cmz6O938oAdX2UKGgGR7/MI55qubI+aAdLA2gIR0Cm0IA4XGfgdX2UKGgGR7/P00WM0gr6aAdLBGgIR0Cm0PLmhdt3dX2UKGgGR7+3ltCRfWtmaAdLAmgIR0Cm0B0SAYpEdX2UKGgGR7+0SrYGt6omaAdLAmgIR0Cmz6/zBhx6dX2UKGgGR7/FNSIgvDgqaAdLAmgIR0Cm0Iw3PzFudX2UKGgGR7+8Uj9n9NvgaAdLAmgIR0Cm0CXw1BMSdX2UKGgGR7/UYao/A0sOaAdLA2gIR0Cm0QA/s3Q2dX2UKGgGR7/PqwhW5paiaAdLA2gIR0Cm0Jt7SiM6dX2UKGgGR7/YIK+i8FpxaAdLBGgIR0Cmz8TPSlWPdX2UKGgGR7+8JfICEHt4aAdLAmgIR0Cm0Q9hZyMldX2UKGgGR7/FoKUmlZX/aAdLA2gIR0Cm0Dk25xzadX2UKGgGR7/R3+dbxEv1aAdLA2gIR0Cm0Kxh+fAcdX2UKGgGR7/IUY8+zMRpaAdLA2gIR0Cm0RzposZpdX2UKGgGR7/edilSCOFQaAdLBGgIR0Cmz9m1hLGrdX2UKGgGR7/B7O3UhFEzaAdLAmgIR0Cm0LXwsoUjdX2UKGgGR7/V3AEdNnGsaAdLBGgIR0Cm0EvikwevdX2UKGgGR7/Qu4gA6uGLaAdLA2gIR0Cmz+lMAWBSdX2UKGgGR7/W5eqrBCUpaAdLBGgIR0Cm0TFpoK2KdX2UKGgGR7/QLTx5LRKIaAdLA2gIR0Cm0Ft4qwyJdX2UKGgGR7/a/Lkjopx4aAdLBGgIR0Cm0MpsoDxLdX2UKGgGR7/GwpON5t3waAdLAmgIR0Cmz/Jxeb/fdX2UKGgGR7+/A31jAi3YaAdLAmgIR0Cm0TqW1MM7dX2UKGgGR7/LvlU6xPfsaAdLA2gIR0Cm0GqZ+hGpdX2UKGgGR7/QAYHgP3BYaAdLA2gIR0Cm0Nkxh2GJdX2UKGgGR7/O+u/1xsEaaAdLA2gIR0Cm0AFTNt65dX2UKGgGR7/EZrHlwLmZaAdLA2gIR0Cm0UlGPPszdX2UKGgGR7/EH8jzI3iraAdLAmgIR0Cm0OHwPRRedX2UKGgGR7/VvQF9roGIaAdLA2gIR0Cm0HfdqL0jdX2UKGgGR7/BsTnJT2nLaAdLAmgIR0Cm0AqT8pCsdX2UKGgGR7+z71qWTot+aAdLAmgIR0Cm0VLE9+w1dX2UKGgGR7++7+T/yXlbaAdLAmgIR0Cm0O336AOKdX2UKGgGR7/KeEIw/PgOaAdLA2gIR0Cm0IiEQGwBdX2UKGgGR7/Gdq+Jxeb/aAdLA2gIR0Cm0BtP557gdX2UKGgGR7/V8rZrYXfqaAdLA2gIR0Cm0WNA1NxmdX2UKGgGR7+7rTpgTh5xaAdLAmgIR0Cm0PeyAxzrdX2UKGgGR7+kFMZgogFHaAdLAWgIR0Cm0CAggX/HdX2UKGgGR7+kgwGnn+yaaAdLAWgIR0Cm0PxxT850dX2UKGgGR7/BwKjSG8EnaAdLAmgIR0Cm0Wyt3fQ8dX2UKGgGR7/G3w1BMSK4aAdLA2gIR0Cm0Ja86FM7dX2UKGgGR7+/hddE9dNWaAdLAmgIR0Cm0ClTvRZ2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (663 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.20415619611740113, "std_reward": 0.14969676524062517, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-11T10:51:20.261496"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:803b0965cfa5d0b37e24343ab9bf189b56533944e6d423b003091825229b7fe4
|
3 |
+
size 2623
|