Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,59 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
### Model Description
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
|
32 |
-
-
|
33 |
-
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- statmt/cc100
|
5 |
+
base_model:
|
6 |
+
- FacebookAI/xlm-roberta-base
|
7 |
---
|
8 |
|
9 |
+
# nomic-xlm-2048: XLM-Roberta Base with RoPE
|
10 |
|
11 |
+
`nomic-xlm-2048` is a finetuned XLM-Roberta Base model with learned positional embeddings swapped for RoPE and trained for 10k steps on [CC100](https://huggingface.co/datasets/statmt/cc100).
|
12 |
|
13 |
|
14 |
+
`nomic-xlm-2048` performs competitively to other multilingual encoders on GLUE and XTREME-R
|
15 |
|
16 |
+
| Model | Params | Pos. | Seq. | Avg. | CoLA | SST-2 | MRPC | STS-B | QQP | MNLI | QNLI | RTE |
|
17 |
+
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
18 |
+
| XLM-R-Base | 279M | Abs. | 512 | 82.35 | 46.95 | 92.54 | 87.37 | 89.32 | 90.69 | 84.34 | 90.35 | 77.26 |
|
19 |
+
| nomic-xlm-2048 | 278M | RoPE | 2048 | 81.63 | 44.69 | 91.97 | 87.50 | 88.48 | 90.38 | 83.59 | 89.38 | 76.54 |
|
20 |
+
| mGTE-Base | 306M | RoPE | 8192 | 80.77 | 27.22 | 91.97 | 89.71 | 89.55 | 91.20 | 85.16 | 90.91 | 80.41 |
|
21 |
|
|
|
22 |
|
23 |
+
| Model | Avg. | XNLI | XCOPA | UDPOS | WikiANN | XQuAD | MLQA | TyDiQA-GoldP | Mewsli-X | LAReQA | Tatoeba |
|
24 |
+
|---|---|---|---|---|---|---|---|---|---|---|---|
|
25 |
+
| XLM-R-Base | 62.31 | 74.49 | 51.8 | 74.33 | 60.99 | 72.96 | 61.45 | 54.31 | 42.45 | 63.49 | 66.79 |
|
26 |
+
| nomic-xlm-2048 | 62.70 | 73.57 | 61.71 | 74.92 | 60.96 | 71.13 | 59.61 | 43.46 | 45.27 | 67.49 | 70.82 |
|
27 |
+
| mGTE-Base | 64.63 | 73.58 | 63.62 | 73.52 | 60.72 | 74.71 | 63.88 | 49.68 | 44.58 | 71.90 | 70.07 |
|
28 |
|
|
|
29 |
|
30 |
+
# Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
```python
|
33 |
+
from transformers import AutoModelForMaskedLM, AutoConfig, AutoTokenizer, pipeline
|
34 |
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-xlm-2048') # `nomic-bert-2048` uses the standard BERT tokenizer
|
36 |
|
37 |
+
config = AutoConfig.from_pretrained('nomic-ai/nomic-xlm-2048', trust_remote_code=True) # the config needs to be passed in
|
38 |
+
model = AutoModelForMaskedLM.from_pretrained('nomic-ai/nomic-xlm-2048',config=config, trust_remote_code=True)
|
|
|
39 |
|
40 |
+
# To use this model directly for masked language modeling
|
41 |
+
classifier = pipeline('fill-mask', model=model, tokenizer=tokenizer,device="cpu")
|
42 |
|
43 |
+
print(classifier("I [MASK] to the store yesterday."))
|
44 |
+
```
|
45 |
+
To finetune the model for a Sequence Classification task, you can use the following snippet
|
46 |
|
47 |
+
```python
|
48 |
+
from transformers import AutoConfig, AutoModelForSequenceClassification
|
49 |
+
model_path = "nomic-ai/nomic-xlm-2048"
|
50 |
+
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
51 |
+
# strict needs to be false here since we're initializing some new params
|
52 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path, config=config, trust_remote_code=True, strict=False)
|
53 |
+
```
|
54 |
|
55 |
+
# Join the Nomic Community
|
56 |
|
57 |
+
- Nomic: [https://nomic.ai](https://nomic.ai)
|
58 |
+
- Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8)
|
59 |
+
- Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|