Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- w4a16
|
4 |
+
- int4
|
5 |
+
- vllm
|
6 |
+
- audio
|
7 |
+
license: apache-2.0
|
8 |
+
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
base_model: openai/whisper-large-v3
|
12 |
+
library_name: transformers
|
13 |
+
---
|
14 |
+
|
15 |
+
# whisper-large-v3-quantized.w4a16
|
16 |
+
|
17 |
+
## Model Overview
|
18 |
+
- **Model Architecture:** whisper-large-v3
|
19 |
+
- **Input:** Audio-Text
|
20 |
+
- **Output:** Text
|
21 |
+
- **Model Optimizations:**
|
22 |
+
- **Weight quantization:** INT4
|
23 |
+
- **Activation quantization:** FP16
|
24 |
+
- **Release Date:** 1/31/2025
|
25 |
+
- **Version:** 1.0
|
26 |
+
- **Model Developers:** Neural Magic
|
27 |
+
|
28 |
+
Quantized version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3).
|
29 |
+
|
30 |
+
### Model Optimizations
|
31 |
+
|
32 |
+
This model was obtained by quantizing the weights of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) to INT4 data type, ready for inference with vLLM >= 0.5.2.
|
33 |
+
|
34 |
+
## Deployment
|
35 |
+
|
36 |
+
### Use with vLLM
|
37 |
+
|
38 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from vllm.assets.audio import AudioAsset
|
42 |
+
from vllm import LLM, SamplingParams
|
43 |
+
|
44 |
+
# prepare model
|
45 |
+
llm = LLM(
|
46 |
+
model="neuralmagic/whisper-large-v3.w4a16",
|
47 |
+
max_model_len=448,
|
48 |
+
max_num_seqs=400,
|
49 |
+
limit_mm_per_prompt={"audio": 1},
|
50 |
+
)
|
51 |
+
|
52 |
+
# prepare inputs
|
53 |
+
inputs = { # Test explicit encoder/decoder prompt
|
54 |
+
"encoder_prompt": {
|
55 |
+
"prompt": "",
|
56 |
+
"multi_modal_data": {
|
57 |
+
"audio": AudioAsset("winning_call").audio_and_sample_rate,
|
58 |
+
},
|
59 |
+
},
|
60 |
+
"decoder_prompt": "<|startoftranscript|>",
|
61 |
+
}
|
62 |
+
|
63 |
+
# generate response
|
64 |
+
print("========== SAMPLE GENERATION ==============")
|
65 |
+
outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64))
|
66 |
+
print(f"PROMPT : {outputs[0].prompt}")
|
67 |
+
print(f"RESPONSE: {outputs[0].outputs[0].text}")
|
68 |
+
print("==========================================")
|
69 |
+
```
|
70 |
+
|
71 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
72 |
+
|
73 |
+
## Creation
|
74 |
+
|
75 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
|
76 |
+
|
77 |
+
```python
|
78 |
+
import torch
|
79 |
+
from datasets import load_dataset
|
80 |
+
from transformers import WhisperProcessor
|
81 |
+
|
82 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
83 |
+
from llmcompressor.transformers import oneshot
|
84 |
+
from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration
|
85 |
+
|
86 |
+
# Select model and load it.
|
87 |
+
MODEL_ID = "openai/whisper-large-v3"
|
88 |
+
|
89 |
+
model = TraceableWhisperForConditionalGeneration.from_pretrained(
|
90 |
+
MODEL_ID,
|
91 |
+
device_map="auto",
|
92 |
+
torch_dtype="auto",
|
93 |
+
)
|
94 |
+
model.config.forced_decoder_ids = None
|
95 |
+
processor = WhisperProcessor.from_pretrained(MODEL_ID)
|
96 |
+
|
97 |
+
# Configure processor the dataset task.
|
98 |
+
processor.tokenizer.set_prefix_tokens(language="en", task="transcribe")
|
99 |
+
|
100 |
+
# Select calibration dataset.
|
101 |
+
DATASET_ID = "MLCommons/peoples_speech"
|
102 |
+
DATASET_SUBSET = "test"
|
103 |
+
DATASET_SPLIT = "test"
|
104 |
+
|
105 |
+
# Select number of samples. 512 samples is a good place to start.
|
106 |
+
# Increasing the number of samples can improve accuracy.
|
107 |
+
NUM_CALIBRATION_SAMPLES = 512
|
108 |
+
MAX_SEQUENCE_LENGTH = 2048
|
109 |
+
|
110 |
+
# Load dataset and preprocess.
|
111 |
+
ds = load_dataset(
|
112 |
+
DATASET_ID,
|
113 |
+
DATASET_SUBSET,
|
114 |
+
split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]",
|
115 |
+
trust_remote_code=True,
|
116 |
+
)
|
117 |
+
|
118 |
+
|
119 |
+
def preprocess(example):
|
120 |
+
return {
|
121 |
+
"array": example["audio"]["array"],
|
122 |
+
"sampling_rate": example["audio"]["sampling_rate"],
|
123 |
+
"text": " " + example["text"].capitalize(),
|
124 |
+
}
|
125 |
+
|
126 |
+
|
127 |
+
ds = ds.map(preprocess, remove_columns=ds.column_names)
|
128 |
+
|
129 |
+
|
130 |
+
# Process inputs.
|
131 |
+
def process(sample):
|
132 |
+
inputs = processor(
|
133 |
+
audio=sample["array"],
|
134 |
+
sampling_rate=sample["sampling_rate"],
|
135 |
+
text=sample["text"],
|
136 |
+
add_special_tokens=True,
|
137 |
+
return_tensors="pt",
|
138 |
+
)
|
139 |
+
|
140 |
+
inputs["input_features"] = inputs["input_features"].to(dtype=model.dtype)
|
141 |
+
inputs["decoder_input_ids"] = inputs["labels"]
|
142 |
+
del inputs["labels"]
|
143 |
+
|
144 |
+
return inputs
|
145 |
+
|
146 |
+
|
147 |
+
ds = ds.map(process, remove_columns=ds.column_names)
|
148 |
+
|
149 |
+
|
150 |
+
# Define a oneshot data collator for multimodal inputs.
|
151 |
+
def data_collator(batch):
|
152 |
+
assert len(batch) == 1
|
153 |
+
return {key: torch.tensor(value) for key, value in batch[0].items()}
|
154 |
+
|
155 |
+
|
156 |
+
# Recipe
|
157 |
+
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"])
|
158 |
+
|
159 |
+
# Apply algorithms.
|
160 |
+
oneshot(
|
161 |
+
model=model,
|
162 |
+
dataset=ds,
|
163 |
+
recipe=recipe,
|
164 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
165 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
166 |
+
data_collator=data_collator,
|
167 |
+
)
|
168 |
+
|
169 |
+
# Confirm generations of the quantized model look sane.
|
170 |
+
print("\n\n")
|
171 |
+
print("========== SAMPLE GENERATION ==============")
|
172 |
+
sample_features = next(iter(ds))["input_features"]
|
173 |
+
sample_decoder_ids = [processor.tokenizer.prefix_tokens]
|
174 |
+
sample_input = {
|
175 |
+
"input_features": torch.tensor(sample_features).to(model.device),
|
176 |
+
"decoder_input_ids": torch.tensor(sample_decoder_ids).to(model.device),
|
177 |
+
}
|
178 |
+
|
179 |
+
output = model.generate(**sample_input, language="en")
|
180 |
+
print(processor.batch_decode(output, skip_special_tokens=True))
|
181 |
+
print("==========================================\n\n")
|
182 |
+
# that's where you have a lot of windows in the south no actually that's passive solar
|
183 |
+
# and passive solar is something that was developed and designed in the 1960s and 70s
|
184 |
+
# and it was a great thing for what it was at the time but it's not a passive house
|
185 |
+
|
186 |
+
# Save to disk compressed.
|
187 |
+
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
|
188 |
+
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
189 |
+
processor.save_pretrained(SAVE_DIR)
|
190 |
+
```
|
191 |
+
|
192 |
+
|
193 |
+
## Evaluation
|
194 |
+
Base Model
|
195 |
+
```
|
196 |
+
Total Test Time: 94.4606 seconds
|
197 |
+
Total Requests: 511
|
198 |
+
Successful Requests: 511
|
199 |
+
Average Latency: 53.3529 seconds
|
200 |
+
Median Latency: 52.7258 seconds
|
201 |
+
95th Percentile Latency: 86.5851 seconds
|
202 |
+
Estimated req_Throughput: 5.41 requests/s
|
203 |
+
Estimated Throughput: 100.79 tok/s
|
204 |
+
WER: 12.660815197787665
|
205 |
+
```
|
206 |
+
|
207 |
+
W4A16
|
208 |
+
```
|
209 |
+
Total Test Time: 106.2064 seconds
|
210 |
+
Total Requests: 511
|
211 |
+
Successful Requests: 511
|
212 |
+
Average Latency: 59.7467 seconds
|
213 |
+
Median Latency: 58.3930 seconds
|
214 |
+
95th Percentile Latency: 97.4831 seconds
|
215 |
+
Estimated req_Throughput: 4.81 requests/s
|
216 |
+
Estimated Throughput: 89.35 tok/s
|
217 |
+
WER: 12.949380786341228
|
218 |
+
```
|
219 |
+
|
220 |
+
### BibTeX entry and citation info
|
221 |
+
```bibtex
|
222 |
+
@misc{radford2022whisper,
|
223 |
+
doi = {10.48550/ARXIV.2212.04356},
|
224 |
+
url = {https://arxiv.org/abs/2212.04356},
|
225 |
+
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
|
226 |
+
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
|
227 |
+
publisher = {arXiv},
|
228 |
+
year = {2022},
|
229 |
+
copyright = {arXiv.org perpetual, non-exclusive license}
|
230 |
+
}
|