--- base_model: mediocredev/open-llama-3b-v2-instruct inference: false model_type: llama prompt_template: | ### User:\n {prompt} ### Assistant:\n quantized_by: mwitiderrick tags: - deepsparse --- ## Open-llama-3b-v2-instruct - DeepSparse This repo contains model files for [Open-llama-3b-v2-instruct](https://huggingface.co/mediocredev/open-llama-3b-v2-instruct) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models. This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: ```bash pip install deepsparse-nightly[llm] ``` Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md): ```python from deepsparse import TextGeneration system_message = 'You are a helpful assistant, who always provide explanation.' user_message = 'How many days are there in a leap year?' formatted_prompt = f'### System:\n{system_message}<|endoftext|>\n### User:\n{user_message}<|endoftext|>\n### Assistant:\n' model = TextGeneration(model_path="hf:nm-testing/open-llama-3b-v2-instruct-pruned50-quant-ds") print(model(formatted_prompt, max_new_tokens=200,repetition_penalty=1.05).generations[0].text) """ - 2-1-1-1-1-re-1-1-2-1. #!-1. - 2. 1. - 2. 12. 1! - 1. #. 12 're-2. 2. 1-2-12-2-1-1-1-2-0. #1. #. 1. #1-1-0. 're-1-1-2-2-1-0. 1-1-0-1-1-2. 1. #1-1-1-1-0. #1-2-1-2-1-1-1-1-1-2-2-1-1-1-1-1-1-1-2-1-1-1-1-1-1-1-1-1-1- """ ``` ## Prompt template ``` ### User:\n {prompt} ### Assistant:\n ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py mediocredev/open-llama-3b-v2-instruct open_platypus --recipe recipe.yaml --save True python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment cp deployment/model.onnx deployment/model-orig.onnx ``` Run this kv-cache injection to speed up the model at inference by caching the Key and Value states: ```python import os import onnx from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector input_file = "deployment/model-orig.onnx" output_file = "deployment/model.onnx" model = onnx.load(input_file, load_external_data=False) model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model) onnx.save(model, output_file) print(f"Modified model saved to: {output_file}") ``` Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)