nithinbharathi commited on
Commit
d2af761
·
verified ·
1 Parent(s): 1e6a607

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,473 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:2
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: thenlper/gte-small
14
+ pipeline_tag: sentence-similarity
15
+ library_name: sentence-transformers
16
+ metrics:
17
+ - cosine_accuracy@1
18
+ - cosine_accuracy@3
19
+ - cosine_accuracy@5
20
+ - cosine_accuracy@10
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_recall@1
26
+ - cosine_recall@3
27
+ - cosine_recall@5
28
+ - cosine_recall@10
29
+ - cosine_ndcg@10
30
+ - cosine_mrr@10
31
+ - cosine_map@100
32
+ model-index:
33
+ - name: BGE base Financial Matryoshka
34
+ results:
35
+ - task:
36
+ type: information-retrieval
37
+ name: Information Retrieval
38
+ dataset:
39
+ name: Unknown
40
+ type: unknown
41
+ metrics:
42
+ - type: cosine_accuracy@1
43
+ value: 1.0
44
+ name: Cosine Accuracy@1
45
+ - type: cosine_accuracy@3
46
+ value: 1.0
47
+ name: Cosine Accuracy@3
48
+ - type: cosine_accuracy@5
49
+ value: 1.0
50
+ name: Cosine Accuracy@5
51
+ - type: cosine_accuracy@10
52
+ value: 1.0
53
+ name: Cosine Accuracy@10
54
+ - type: cosine_precision@1
55
+ value: 1.0
56
+ name: Cosine Precision@1
57
+ - type: cosine_precision@3
58
+ value: 0.3333333333333333
59
+ name: Cosine Precision@3
60
+ - type: cosine_precision@5
61
+ value: 0.2
62
+ name: Cosine Precision@5
63
+ - type: cosine_precision@10
64
+ value: 0.1
65
+ name: Cosine Precision@10
66
+ - type: cosine_recall@1
67
+ value: 1.0
68
+ name: Cosine Recall@1
69
+ - type: cosine_recall@3
70
+ value: 1.0
71
+ name: Cosine Recall@3
72
+ - type: cosine_recall@5
73
+ value: 1.0
74
+ name: Cosine Recall@5
75
+ - type: cosine_recall@10
76
+ value: 1.0
77
+ name: Cosine Recall@10
78
+ - type: cosine_ndcg@10
79
+ value: 1.0
80
+ name: Cosine Ndcg@10
81
+ - type: cosine_mrr@10
82
+ value: 1.0
83
+ name: Cosine Mrr@10
84
+ - type: cosine_map@100
85
+ value: 1.0
86
+ name: Cosine Map@100
87
+ ---
88
+
89
+ # BGE base Financial Matryoshka
90
+
91
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-small](https://huggingface.co/thenlper/gte-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
92
+
93
+ ## Model Details
94
+
95
+ ### Model Description
96
+ - **Model Type:** Sentence Transformer
97
+ - **Base model:** [thenlper/gte-small](https://huggingface.co/thenlper/gte-small) <!-- at revision 17e1f347d17fe144873b1201da91788898c639cd -->
98
+ - **Maximum Sequence Length:** 512 tokens
99
+ - **Output Dimensionality:** 384 dimensions
100
+ - **Similarity Function:** Cosine Similarity
101
+ <!-- - **Training Dataset:** Unknown -->
102
+ - **Language:** en
103
+ - **License:** apache-2.0
104
+
105
+ ### Model Sources
106
+
107
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
108
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
109
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
110
+
111
+ ### Full Model Architecture
112
+
113
+ ```
114
+ SentenceTransformer(
115
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
116
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
117
+ (2): Normalize()
118
+ )
119
+ ```
120
+
121
+ ## Usage
122
+
123
+ ### Direct Usage (Sentence Transformers)
124
+
125
+ First install the Sentence Transformers library:
126
+
127
+ ```bash
128
+ pip install -U sentence-transformers
129
+ ```
130
+
131
+ Then you can load this model and run inference.
132
+ ```python
133
+ from sentence_transformers import SentenceTransformer
134
+
135
+ # Download from the 🤗 Hub
136
+ model = SentenceTransformer("nithinbharathi/fine_tuned")
137
+ # Run inference
138
+ sentences = [
139
+ 'The weather is lovely today.',
140
+ "It's so sunny outside!",
141
+ 'He drove to the stadium.',
142
+ ]
143
+ embeddings = model.encode(sentences)
144
+ print(embeddings.shape)
145
+ # [3, 384]
146
+
147
+ # Get the similarity scores for the embeddings
148
+ similarities = model.similarity(embeddings, embeddings)
149
+ print(similarities.shape)
150
+ # [3, 3]
151
+ ```
152
+
153
+ <!--
154
+ ### Direct Usage (Transformers)
155
+
156
+ <details><summary>Click to see the direct usage in Transformers</summary>
157
+
158
+ </details>
159
+ -->
160
+
161
+ <!--
162
+ ### Downstream Usage (Sentence Transformers)
163
+
164
+ You can finetune this model on your own dataset.
165
+
166
+ <details><summary>Click to expand</summary>
167
+
168
+ </details>
169
+ -->
170
+
171
+ <!--
172
+ ### Out-of-Scope Use
173
+
174
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
175
+ -->
176
+
177
+ ## Evaluation
178
+
179
+ ### Metrics
180
+
181
+ #### Information Retrieval
182
+
183
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
184
+
185
+ | Metric | Value |
186
+ |:--------------------|:--------|
187
+ | cosine_accuracy@1 | 1.0 |
188
+ | cosine_accuracy@3 | 1.0 |
189
+ | cosine_accuracy@5 | 1.0 |
190
+ | cosine_accuracy@10 | 1.0 |
191
+ | cosine_precision@1 | 1.0 |
192
+ | cosine_precision@3 | 0.3333 |
193
+ | cosine_precision@5 | 0.2 |
194
+ | cosine_precision@10 | 0.1 |
195
+ | cosine_recall@1 | 1.0 |
196
+ | cosine_recall@3 | 1.0 |
197
+ | cosine_recall@5 | 1.0 |
198
+ | cosine_recall@10 | 1.0 |
199
+ | **cosine_ndcg@10** | **1.0** |
200
+ | cosine_mrr@10 | 1.0 |
201
+ | cosine_map@100 | 1.0 |
202
+
203
+ <!--
204
+ ## Bias, Risks and Limitations
205
+
206
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
207
+ -->
208
+
209
+ <!--
210
+ ### Recommendations
211
+
212
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
213
+ -->
214
+
215
+ ## Training Details
216
+
217
+ ### Training Dataset
218
+
219
+ #### Unnamed Dataset
220
+
221
+ * Size: 2 training samples
222
+ * Columns: <code>anchor</code> and <code>positive</code>
223
+ * Approximate statistics based on the first 2 samples:
224
+ | | anchor | positive |
225
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
226
+ | type | string | string |
227
+ | details | <ul><li>min: 17 tokens</li><li>mean: 19.0 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 151 tokens</li><li>mean: 164.5 tokens</li><li>max: 178 tokens</li></ul> |
228
+ * Samples:
229
+ | anchor | positive |
230
+ |:---------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
231
+ | <code>Write a function to find the longest chain which can be formed from the given set of pairs.</code> | <code>def intersection_sets(s1, s2):<br><br> """<br> This exercise requires you to complete the code to find the intersection of two sets using list comprehension and iterating through sets.<br> <br> You are given two sets, s1 and s2, and you need to find the common elements between them. You should use list comprehension<br> to create a new list containing the common elements found in both sets. Finally, return the list with the common elements.<br> <br> Remember to use list comprehension and iterate through sets to solve this exercise. Good luck!<br> """<br><br> intersection = [x for x in s1 if x in s2] # Use list comprehension to iterate through s1 and check if each element exists in s2<br><br> return intersection</code> |
232
+ | <code>Write a python function to find the first repeated character in a given string.</code> | <code>def get_common_words(string1, string2):<br> """<br> This function takes in two strings and returns a set of common words found in both strings.<br> <br> Args:<br> string1 (str): The first string.<br> string2 (str): The second string.<br> <br> Returns:<br> set: A set of common words found in both strings.<br> <br> Raises:<br> ValueError: If either string1 or string2 is empty.<br> """<br> if not string1 or not string2:<br> raise ValueError("Both strings must not be empty")<br><br> words1 = string1.split()<br> words2 = string2.split()<br> common_words = set()<br><br> for word1 in words1:<br> for word2 in words2:<br> if word1 == word2:<br> common_words.add(word1)<br><br> return common_words<br><br><br></code> |
233
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
234
+ ```json
235
+ {
236
+ "loss": "MultipleNegativesRankingLoss",
237
+ "matryoshka_dims": [
238
+ 384,
239
+ 256,
240
+ 128,
241
+ 64
242
+ ],
243
+ "matryoshka_weights": [
244
+ 1,
245
+ 1,
246
+ 1,
247
+ 1
248
+ ],
249
+ "n_dims_per_step": -1
250
+ }
251
+ ```
252
+
253
+ ### Training Hyperparameters
254
+ #### Non-Default Hyperparameters
255
+
256
+ - `eval_strategy`: epoch
257
+ - `per_device_train_batch_size`: 32
258
+ - `per_device_eval_batch_size`: 16
259
+ - `gradient_accumulation_steps`: 16
260
+ - `learning_rate`: 2e-05
261
+ - `num_train_epochs`: 10
262
+ - `lr_scheduler_type`: cosine
263
+ - `warmup_ratio`: 0.1
264
+ - `bf16`: True
265
+ - `tf32`: True
266
+ - `load_best_model_at_end`: True
267
+ - `optim`: adamw_torch_fused
268
+ - `batch_sampler`: no_duplicates
269
+
270
+ #### All Hyperparameters
271
+ <details><summary>Click to expand</summary>
272
+
273
+ - `overwrite_output_dir`: False
274
+ - `do_predict`: False
275
+ - `eval_strategy`: epoch
276
+ - `prediction_loss_only`: True
277
+ - `per_device_train_batch_size`: 32
278
+ - `per_device_eval_batch_size`: 16
279
+ - `per_gpu_train_batch_size`: None
280
+ - `per_gpu_eval_batch_size`: None
281
+ - `gradient_accumulation_steps`: 16
282
+ - `eval_accumulation_steps`: None
283
+ - `torch_empty_cache_steps`: None
284
+ - `learning_rate`: 2e-05
285
+ - `weight_decay`: 0.0
286
+ - `adam_beta1`: 0.9
287
+ - `adam_beta2`: 0.999
288
+ - `adam_epsilon`: 1e-08
289
+ - `max_grad_norm`: 1.0
290
+ - `num_train_epochs`: 10
291
+ - `max_steps`: -1
292
+ - `lr_scheduler_type`: cosine
293
+ - `lr_scheduler_kwargs`: {}
294
+ - `warmup_ratio`: 0.1
295
+ - `warmup_steps`: 0
296
+ - `log_level`: passive
297
+ - `log_level_replica`: warning
298
+ - `log_on_each_node`: True
299
+ - `logging_nan_inf_filter`: True
300
+ - `save_safetensors`: True
301
+ - `save_on_each_node`: False
302
+ - `save_only_model`: False
303
+ - `restore_callback_states_from_checkpoint`: False
304
+ - `no_cuda`: False
305
+ - `use_cpu`: False
306
+ - `use_mps_device`: False
307
+ - `seed`: 42
308
+ - `data_seed`: None
309
+ - `jit_mode_eval`: False
310
+ - `use_ipex`: False
311
+ - `bf16`: True
312
+ - `fp16`: False
313
+ - `fp16_opt_level`: O1
314
+ - `half_precision_backend`: auto
315
+ - `bf16_full_eval`: False
316
+ - `fp16_full_eval`: False
317
+ - `tf32`: True
318
+ - `local_rank`: 0
319
+ - `ddp_backend`: None
320
+ - `tpu_num_cores`: None
321
+ - `tpu_metrics_debug`: False
322
+ - `debug`: []
323
+ - `dataloader_drop_last`: False
324
+ - `dataloader_num_workers`: 0
325
+ - `dataloader_prefetch_factor`: None
326
+ - `past_index`: -1
327
+ - `disable_tqdm`: False
328
+ - `remove_unused_columns`: True
329
+ - `label_names`: None
330
+ - `load_best_model_at_end`: True
331
+ - `ignore_data_skip`: False
332
+ - `fsdp`: []
333
+ - `fsdp_min_num_params`: 0
334
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
335
+ - `fsdp_transformer_layer_cls_to_wrap`: None
336
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
337
+ - `deepspeed`: None
338
+ - `label_smoothing_factor`: 0.0
339
+ - `optim`: adamw_torch_fused
340
+ - `optim_args`: None
341
+ - `adafactor`: False
342
+ - `group_by_length`: False
343
+ - `length_column_name`: length
344
+ - `ddp_find_unused_parameters`: None
345
+ - `ddp_bucket_cap_mb`: None
346
+ - `ddp_broadcast_buffers`: False
347
+ - `dataloader_pin_memory`: True
348
+ - `dataloader_persistent_workers`: False
349
+ - `skip_memory_metrics`: True
350
+ - `use_legacy_prediction_loop`: False
351
+ - `push_to_hub`: False
352
+ - `resume_from_checkpoint`: None
353
+ - `hub_model_id`: None
354
+ - `hub_strategy`: every_save
355
+ - `hub_private_repo`: None
356
+ - `hub_always_push`: False
357
+ - `gradient_checkpointing`: False
358
+ - `gradient_checkpointing_kwargs`: None
359
+ - `include_inputs_for_metrics`: False
360
+ - `include_for_metrics`: []
361
+ - `eval_do_concat_batches`: True
362
+ - `fp16_backend`: auto
363
+ - `push_to_hub_model_id`: None
364
+ - `push_to_hub_organization`: None
365
+ - `mp_parameters`:
366
+ - `auto_find_batch_size`: False
367
+ - `full_determinism`: False
368
+ - `torchdynamo`: None
369
+ - `ray_scope`: last
370
+ - `ddp_timeout`: 1800
371
+ - `torch_compile`: False
372
+ - `torch_compile_backend`: None
373
+ - `torch_compile_mode`: None
374
+ - `dispatch_batches`: None
375
+ - `split_batches`: None
376
+ - `include_tokens_per_second`: False
377
+ - `include_num_input_tokens_seen`: False
378
+ - `neftune_noise_alpha`: None
379
+ - `optim_target_modules`: None
380
+ - `batch_eval_metrics`: False
381
+ - `eval_on_start`: False
382
+ - `use_liger_kernel`: False
383
+ - `eval_use_gather_object`: False
384
+ - `average_tokens_across_devices`: False
385
+ - `prompts`: None
386
+ - `batch_sampler`: no_duplicates
387
+ - `multi_dataset_batch_sampler`: proportional
388
+
389
+ </details>
390
+
391
+ ### Training Logs
392
+ | Epoch | Step | Training Loss | cosine_ndcg@10 |
393
+ |:-------:|:-----:|:-------------:|:--------------:|
394
+ | 1.0 | 1 | - | 0.6309 |
395
+ | 2.0 | 2 | - | 0.8155 |
396
+ | **3.0** | **3** | **-** | **1.0** |
397
+ | 4.0 | 4 | - | 1.0 |
398
+ | 5.0 | 5 | 1.1685 | 1.0 |
399
+ | 6.0 | 6 | - | 1.0 |
400
+ | 7.0 | 7 | - | 1.0 |
401
+ | 8.0 | 8 | - | 1.0 |
402
+ | 9.0 | 9 | - | 1.0 |
403
+ | 10.0 | 10 | 0.2522 | 1.0 |
404
+
405
+ * The bold row denotes the saved checkpoint.
406
+
407
+ ### Framework Versions
408
+ - Python: 3.10.12
409
+ - Sentence Transformers: 3.4.1
410
+ - Transformers: 4.49.0
411
+ - PyTorch: 2.6.0+cu124
412
+ - Accelerate: 1.5.2
413
+ - Datasets: 3.3.2
414
+ - Tokenizers: 0.21.0
415
+
416
+ ## Citation
417
+
418
+ ### BibTeX
419
+
420
+ #### Sentence Transformers
421
+ ```bibtex
422
+ @inproceedings{reimers-2019-sentence-bert,
423
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
424
+ author = "Reimers, Nils and Gurevych, Iryna",
425
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
426
+ month = "11",
427
+ year = "2019",
428
+ publisher = "Association for Computational Linguistics",
429
+ url = "https://arxiv.org/abs/1908.10084",
430
+ }
431
+ ```
432
+
433
+ #### MatryoshkaLoss
434
+ ```bibtex
435
+ @misc{kusupati2024matryoshka,
436
+ title={Matryoshka Representation Learning},
437
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
438
+ year={2024},
439
+ eprint={2205.13147},
440
+ archivePrefix={arXiv},
441
+ primaryClass={cs.LG}
442
+ }
443
+ ```
444
+
445
+ #### MultipleNegativesRankingLoss
446
+ ```bibtex
447
+ @misc{henderson2017efficient,
448
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
449
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
450
+ year={2017},
451
+ eprint={1705.00652},
452
+ archivePrefix={arXiv},
453
+ primaryClass={cs.CL}
454
+ }
455
+ ```
456
+
457
+ <!--
458
+ ## Glossary
459
+
460
+ *Clearly define terms in order to be accessible across audiences.*
461
+ -->
462
+
463
+ <!--
464
+ ## Model Card Authors
465
+
466
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
467
+ -->
468
+
469
+ <!--
470
+ ## Model Card Contact
471
+
472
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
473
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "thenlper/gte-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.49.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58ec8340489bc2715f429a370e582108dd06f4953489900d2acf4c08da8ef527
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff