Upload folder using huggingface_hub
Browse files- app.py +37 -0
- examples/.DS_Store +0 -0
- examples/negative.jpeg +0 -0
- examples/positive.jpeg +0 -0
- model_blood.pt +3 -0
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import models
|
7 |
+
|
8 |
+
# ข้อความ string ค่าของ classes ที่มี
|
9 |
+
targets = ['Negative','Positive']
|
10 |
+
|
11 |
+
# เตรียม data ก่อนเข้าโมเดล
|
12 |
+
transform = transforms.Compose([
|
13 |
+
transforms.Resize(256),
|
14 |
+
transforms.CenterCrop(224),
|
15 |
+
transforms.ToTensor(),
|
16 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
17 |
+
])
|
18 |
+
|
19 |
+
# ฟังก์ชันประมวลผลรูปภาพ
|
20 |
+
def classify_image(img):
|
21 |
+
img = Image.fromarray(img.astype('uint8'), 'RGB')
|
22 |
+
img = transform(img).unsqueeze(0)
|
23 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
24 |
+
img = img.to(device)
|
25 |
+
|
26 |
+
with torch.no_grad():
|
27 |
+
prediction = torch.nn.functional.softmax(model(img)[0], dim=0)
|
28 |
+
confidences = {targets[i]: float(prediction[i]) for i in range(2)}
|
29 |
+
return confidences
|
30 |
+
|
31 |
+
# รันโปรแกรมเว็บ gradio
|
32 |
+
demo = gr.Interface(fn=classify_image,
|
33 |
+
inputs=gr.Image(width=224, height=224),
|
34 |
+
outputs=gr.Label(num_top_classes=2),
|
35 |
+
examples=["examples/negative.jpeg", "examples/positive.jpeg"]) # ภาพตัวอย่างมาจาก folder examples
|
36 |
+
|
37 |
+
demo.launch(share=True, debug=True)
|
examples/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
examples/negative.jpeg
ADDED
![]() |
examples/positive.jpeg
ADDED
![]() |
model_blood.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:146d347cf6d13f3e7247132e72c4b1bb5690972afe129e0b5aa6d4ed7c17d824
|
3 |
+
size 94395906
|