nikgeo commited on
Commit
12760e3
·
1 Parent(s): c98b221

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.22 +/- 0.82
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0b6e7f6811735d4c87b1e30d174d3ee13d3d27a7fd697c72ccda3714e2e8c0d
3
+ size 107773
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc9db4960d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fc9db497040>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679260711503937083,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwc2vPogGRLvQZRk/wc2vPogGRLvQZRk/wc2vPogGRLvQZRk/wc2vPogGRLvQZRk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6nx/P2yvST+59kO/NiCTvnjUob+0nJ6+JsmDP4wOn794boK/m2bEvwIyLr/shgg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADBza8+iAZEu9BlGT+JO5c7sj+oOnpe7DvBza8+iAZEu9BlGT+JO5c7sj+oOnpe7DvBza8+iAZEu9BlGT+JO5c7sj+oOnpe7DvBza8+iAZEu9BlGT+JO5c7sj+oOnpe7DuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.34336665 -0.00299111 0.5992098 ]\n [ 0.34336665 -0.00299111 0.5992098 ]\n [ 0.34336665 -0.00299111 0.5992098 ]\n [ 0.34336665 -0.00299111 0.5992098 ]]",
60
+ "desired_goal": "[[ 0.9979998 0.787833 -0.76548344]\n [-0.28735512 -1.2642965 -0.3097893 ]\n [ 1.0295761 -1.2426314 -1.0189962 ]\n [-1.5343813 -0.68045056 0.53330874]]",
61
+ "observation": "[[ 0.34336665 -0.00299111 0.5992098 0.00461525 0.00128364 0.00721341]\n [ 0.34336665 -0.00299111 0.5992098 0.00461525 0.00128364 0.00721341]\n [ 0.34336665 -0.00299111 0.5992098 0.00461525 0.00128364 0.00721341]\n [ 0.34336665 -0.00299111 0.5992098 0.00461525 0.00128364 0.00721341]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcRJDvQVx1LwiY8E9i2+mPSfetD285ho9wdggvdUOWryrJvg9VWekvc5OuT18OGw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.04762501 -0.0259328 0.09442736]\n [ 0.08126744 0.08831435 0.0378177 ]\n [-0.03926921 -0.0133092 0.1211675 ]\n [-0.08027522 0.09048234 0.23068422]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMqzijczjBcCUhpRSlIwBbJRLMowBdJRHQKwcte2uxKR1fZQoaAZoCWgPQwi+TX/2I8UGwJSGlFKUaBVLMmgWR0CsHEVYISlFdX2UKGgGaAloD0MIgNWRI53BBsCUhpRSlGgVSzJoFkdArBugaaTfSHV9lChoBmgJaA9DCCydD88SJAnAlIaUUpRoFUsyaBZHQKwaiNcW0qp1fZQoaAZoCWgPQwgKaCJseBoAwJSGlFKUaBVLMmgWR0CsHnxCY1HfdX2UKGgGaAloD0MIv5tu2SEeBMCUhpRSlGgVSzJoFkdArB4MCzTnaHV9lChoBmgJaA9DCEgzFk1nJwTAlIaUUpRoFUsyaBZHQKwdZzPKMeh1fZQoaAZoCWgPQwiKA+j3/TsJwJSGlFKUaBVLMmgWR0CsHE+G47RwdX2UKGgGaAloD0MIKGA7GLGPDsCUhpRSlGgVSzJoFkdArCAOAVfu1HV9lChoBmgJaA9DCIdvYd14FwjAlIaUUpRoFUsyaBZHQKwfnJ3gUDd1fZQoaAZoCWgPQwgaiGUzh+QJwJSGlFKUaBVLMmgWR0CsHvchC+lCdX2UKGgGaAloD0MImgmGcw2TA8CUhpRSlGgVSzJoFkdArB3evStvGnV9lChoBmgJaA9DCLa93ZIc0A3AlIaUUpRoFUsyaBZHQKwhFGWD6Fd1fZQoaAZoCWgPQwgdy7vqAbMAwJSGlFKUaBVLMmgWR0CsIKL0z0pWdX2UKGgGaAloD0MIqn6l8+F5B8CUhpRSlGgVSzJoFkdArB/9a2WpqHV9lChoBmgJaA9DCMNF7unqjg3AlIaUUpRoFUsyaBZHQKwe5PepGWl1fZQoaAZoCWgPQwjzkCkfgioNwJSGlFKUaBVLMmgWR0CsIh9v0h/zdX2UKGgGaAloD0MIXvWAecjkE8CUhpRSlGgVSzJoFkdArCGt+qioKnV9lChoBmgJaA9DCFvri4S2/AXAlIaUUpRoFUsyaBZHQKwhCIldC3R1fZQoaAZoCWgPQwh6UiY1tBEQwJSGlFKUaBVLMmgWR0CsH+/779AHdX2UKGgGaAloD0MIAHUDBd5JBsCUhpRSlGgVSzJoFkdArCMx8WsRx3V9lChoBmgJaA9DCFdfXRWoJQnAlIaUUpRoFUsyaBZHQKwiwICU5dZ1fZQoaAZoCWgPQwgZyol2FeISwJSGlFKUaBVLMmgWR0CsIhsTFl06dX2UKGgGaAloD0MIqtIW1/gMCMCUhpRSlGgVSzJoFkdArCEClnAZbnV9lChoBmgJaA9DCHkkXp7O1QjAlIaUUpRoFUsyaBZHQKwkPBsQ/X51fZQoaAZoCWgPQwjfwrrx7hgRwJSGlFKUaBVLMmgWR0CsI8q6FuejdX2UKGgGaAloD0MIaqD5nLu9BMCUhpRSlGgVSzJoFkdArCMlSwW30HV9lChoBmgJaA9DCBCVRszsswbAlIaUUpRoFUsyaBZHQKwiDMSsbNt1fZQoaAZoCWgPQwhHO2743ZQPwJSGlFKUaBVLMmgWR0CsJT0H6dlNdX2UKGgGaAloD0MIiIOEKF/AEcCUhpRSlGgVSzJoFkdArCTLkn1FpnV9lChoBmgJaA9DCDvgumJG2APAlIaUUpRoFUsyaBZHQKwkJc2R7qp1fZQoaAZoCWgPQwjZQSWuY1wNwJSGlFKUaBVLMmgWR0CsIw16E8JVdX2UKGgGaAloD0MIXTP5Zpt7EcCUhpRSlGgVSzJoFkdArCZIJswcpHV9lChoBmgJaA9DCNXrFoGxnhXAlIaUUpRoFUsyaBZHQKwl1ryDqW11fZQoaAZoCWgPQwiRfZBlwcQHwJSGlFKUaBVLMmgWR0CsJTD6Fds0dX2UKGgGaAloD0MIXrwft1/+CsCUhpRSlGgVSzJoFkdArCQYeaKDTXV9lChoBmgJaA9DCMPTK2UZgg7AlIaUUpRoFUsyaBZHQKwnRltj0+V1fZQoaAZoCWgPQwiN0M/U67YBwJSGlFKUaBVLMmgWR0CsJtUfgaWHdX2UKGgGaAloD0MI/fZ14JyRDsCUhpRSlGgVSzJoFkdArCYvrhR64XV9lChoBmgJaA9DCLx2acNhaQHAlIaUUpRoFUsyaBZHQKwlF1pTMq11fZQoaAZoCWgPQwjV6qurAjUNwJSGlFKUaBVLMmgWR0CsKFULlV94dX2UKGgGaAloD0MIhnMNMzS+E8CUhpRSlGgVSzJoFkdArCfjtmcvunV9lChoBmgJaA9DCPwApDZxEgbAlIaUUpRoFUsyaBZHQKwnPfj0cwR1fZQoaAZoCWgPQwjxKQDGMygDwJSGlFKUaBVLMmgWR0CsJiXVCojwdX2UKGgGaAloD0MIIenTKvrjDMCUhpRSlGgVSzJoFkdArClSO938oHV9lChoBmgJaA9DCNUhN8MN2AHAlIaUUpRoFUsyaBZHQKwo4NtqHoJ1fZQoaAZoCWgPQwjr4ctEETIHwJSGlFKUaBVLMmgWR0CsKDtVBD5TdX2UKGgGaAloD0MIQtDRqpaUFMCUhpRSlGgVSzJoFkdArCci0+kgwHV9lChoBmgJaA9DCKZgjbPpaALAlIaUUpRoFUsyaBZHQKwqYcsDnvF1fZQoaAZoCWgPQwgibk4lA+AAwJSGlFKUaBVLMmgWR0CsKfBzV+ZxdX2UKGgGaAloD0MIceMW83MTE8CUhpRSlGgVSzJoFkdArClKtvGZNXV9lChoBmgJaA9DCMNF7unqjv6/lIaUUpRoFUsyaBZHQKwoMi8Fpwl1fZQoaAZoCWgPQwic3Vomw3EOwJSGlFKUaBVLMmgWR0CsK2d30PH1dX2UKGgGaAloD0MInbmHhO9dBcCUhpRSlGgVSzJoFkdArCr2GO+7DnV9lChoBmgJaA9DCNSbUfNVcvy/lIaUUpRoFUsyaBZHQKwqUGO+7Dl1fZQoaAZoCWgPQwibPdAKDCkUwJSGlFKUaBVLMmgWR0CsKTf7zkIYdX2UKGgGaAloD0MI4pLjTukgDsCUhpRSlGgVSzJoFkdArCyBxNqQBHV9lChoBmgJaA9DCApK0cq9UBPAlIaUUpRoFUsyaBZHQKwsEI8hcJN1fZQoaAZoCWgPQwicUl4roXsAwJSGlFKUaBVLMmgWR0CsK2swlByCdX2UKGgGaAloD0MI5qxPOSb7HMCUhpRSlGgVSzJoFkdArCpSqZML4XV9lChoBmgJaA9DCD9vKlJhrBPAlIaUUpRoFUsyaBZHQKwtkBBiTdN1fZQoaAZoCWgPQwjj4NIx59kTwJSGlFKUaBVLMmgWR0CsLR7EP1+RdX2UKGgGaAloD0MIB9MwfETcEMCUhpRSlGgVSzJoFkdArCx5Gz8gp3V9lChoBmgJaA9DCLxcxHdilg3AlIaUUpRoFUsyaBZHQKwrYMUh3aB1fZQoaAZoCWgPQwhiE5m5wAUDwJSGlFKUaBVLMmgWR0CsLpuwHJLedX2UKGgGaAloD0MImX/0TZrGDcCUhpRSlGgVSzJoFkdArC4qcbzbvnV9lChoBmgJaA9DCIL917lpMwTAlIaUUpRoFUsyaBZHQKwthNKyv9t1fZQoaAZoCWgPQwhFY+3vbA8BwJSGlFKUaBVLMmgWR0CsLGyBshxHdX2UKGgGaAloD0MItiv0wTL2/7+UhpRSlGgVSzJoFkdArC+e+IuXeHV9lChoBmgJaA9DCMqNImsNVRLAlIaUUpRoFUsyaBZHQKwvLbu+h5B1fZQoaAZoCWgPQwiaQBGLGNYBwJSGlFKUaBVLMmgWR0CsLof9Hc1wdX2UKGgGaAloD0MIDQBV3LhFCMCUhpRSlGgVSzJoFkdArC1vfO2RaHV9lChoBmgJaA9DCLvs153u/B7AlIaUUpRoFUsyaBZHQKwwshyKekJ1fZQoaAZoCWgPQwgjS+ZY3tULwJSGlFKUaBVLMmgWR0CsMECxeLNwdX2UKGgGaAloD0MIkBZnDHNiDsCUhpRSlGgVSzJoFkdArC+bCvX9SHV9lChoBmgJaA9DCCYYzjXMgBLAlIaUUpRoFUsyaBZHQKwugoZydWh1fZQoaAZoCWgPQwjk9ssnKxYTwJSGlFKUaBVLMmgWR0CsMcXUH6dldX2UKGgGaAloD0MIoRSt3AusCsCUhpRSlGgVSzJoFkdArDFUtNBWxXV9lChoBmgJaA9DCJ3xfXGp6gjAlIaUUpRoFUsyaBZHQKwwrvy9VWF1fZQoaAZoCWgPQwgwStBf6BH/v5SGlFKUaBVLMmgWR0CsL5a42CNCdX2UKGgGaAloD0MIc0pATMIlCMCUhpRSlGgVSzJoFkdArDLYkeIVM3V9lChoBmgJaA9DCEfjUL8L+wHAlIaUUpRoFUsyaBZHQKwyZyksSTR1fZQoaAZoCWgPQwgwZHWr5wQJwJSGlFKUaBVLMmgWR0CsMcHCoCMhdX2UKGgGaAloD0MIaoXpew0BCcCUhpRSlGgVSzJoFkdArDCpTAFgUnV9lChoBmgJaA9DCCoaa39nmw7AlIaUUpRoFUsyaBZHQKw0EtmL9/B1fZQoaAZoCWgPQwgqAMYzaOgSwJSGlFKUaBVLMmgWR0CsM6MGPgejdX2UKGgGaAloD0MIcQM+P4wwDsCUhpRSlGgVSzJoFkdArDL+FzuF6HV9lChoBmgJaA9DCB+DFadaawrAlIaUUpRoFUsyaBZHQKwx5nW8RL91fZQoaAZoCWgPQwhrt11orlMEwJSGlFKUaBVLMmgWR0CsNcKTKT0QdX2UKGgGaAloD0MIfxXgu807AsCUhpRSlGgVSzJoFkdArDVR+DvmYHV9lChoBmgJaA9DCJ8561OOeRfAlIaUUpRoFUsyaBZHQKw0rOpsGgV1fZQoaAZoCWgPQwjrGcIxyz4JwJSGlFKUaBVLMmgWR0CsM5VCojwAdX2UKGgGaAloD0MIW3o01ZP5E8CUhpRSlGgVSzJoFkdArDdwZ62OQ3V9lChoBmgJaA9DCFGC/kKPeAHAlIaUUpRoFUsyaBZHQKw2/5SFXaJ1fZQoaAZoCWgPQwiGyOnr+ToCwJSGlFKUaBVLMmgWR0CsNlp1ie/YdX2UKGgGaAloD0MIHAjJAiZQBsCUhpRSlGgVSzJoFkdArDVCpgkTpXV9lChoBmgJaA9DCJjD7juGJw7AlIaUUpRoFUsyaBZHQKw5MYAKfFt1fZQoaAZoCWgPQwiZY3lXPaADwJSGlFKUaBVLMmgWR0CsOMEIHC40dX2UKGgGaAloD0MIoN6Mmq+yA8CUhpRSlGgVSzJoFkdArDgcLlV94XV9lChoBmgJaA9DCMBfzJasSgrAlIaUUpRoFUsyaBZHQKw3BJK8L8d1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d91ab65a9542099274419be1c2d4425d4b9fee538264e2b38f21c9abeea90ad5
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a19af0ac76f7c74c603c751b783536e7a14b50b46a4e4e48e288df3d93c653f4
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc9db4960d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc9db497040>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679260711503937083, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwc2vPogGRLvQZRk/wc2vPogGRLvQZRk/wc2vPogGRLvQZRk/wc2vPogGRLvQZRk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6nx/P2yvST+59kO/NiCTvnjUob+0nJ6+JsmDP4wOn794boK/m2bEvwIyLr/shgg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADBza8+iAZEu9BlGT+JO5c7sj+oOnpe7DvBza8+iAZEu9BlGT+JO5c7sj+oOnpe7DvBza8+iAZEu9BlGT+JO5c7sj+oOnpe7DvBza8+iAZEu9BlGT+JO5c7sj+oOnpe7DuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.34336665 -0.00299111 0.5992098 ]\n [ 0.34336665 -0.00299111 0.5992098 ]\n [ 0.34336665 -0.00299111 0.5992098 ]\n [ 0.34336665 -0.00299111 0.5992098 ]]", "desired_goal": "[[ 0.9979998 0.787833 -0.76548344]\n [-0.28735512 -1.2642965 -0.3097893 ]\n [ 1.0295761 -1.2426314 -1.0189962 ]\n [-1.5343813 -0.68045056 0.53330874]]", "observation": "[[ 0.34336665 -0.00299111 0.5992098 0.00461525 0.00128364 0.00721341]\n [ 0.34336665 -0.00299111 0.5992098 0.00461525 0.00128364 0.00721341]\n [ 0.34336665 -0.00299111 0.5992098 0.00461525 0.00128364 0.00721341]\n [ 0.34336665 -0.00299111 0.5992098 0.00461525 0.00128364 0.00721341]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcRJDvQVx1LwiY8E9i2+mPSfetD285ho9wdggvdUOWryrJvg9VWekvc5OuT18OGw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04762501 -0.0259328 0.09442736]\n [ 0.08126744 0.08831435 0.0378177 ]\n [-0.03926921 -0.0133092 0.1211675 ]\n [-0.08027522 0.09048234 0.23068422]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMqzijczjBcCUhpRSlIwBbJRLMowBdJRHQKwcte2uxKR1fZQoaAZoCWgPQwi+TX/2I8UGwJSGlFKUaBVLMmgWR0CsHEVYISlFdX2UKGgGaAloD0MIgNWRI53BBsCUhpRSlGgVSzJoFkdArBugaaTfSHV9lChoBmgJaA9DCCydD88SJAnAlIaUUpRoFUsyaBZHQKwaiNcW0qp1fZQoaAZoCWgPQwgKaCJseBoAwJSGlFKUaBVLMmgWR0CsHnxCY1HfdX2UKGgGaAloD0MIv5tu2SEeBMCUhpRSlGgVSzJoFkdArB4MCzTnaHV9lChoBmgJaA9DCEgzFk1nJwTAlIaUUpRoFUsyaBZHQKwdZzPKMeh1fZQoaAZoCWgPQwiKA+j3/TsJwJSGlFKUaBVLMmgWR0CsHE+G47RwdX2UKGgGaAloD0MIKGA7GLGPDsCUhpRSlGgVSzJoFkdArCAOAVfu1HV9lChoBmgJaA9DCIdvYd14FwjAlIaUUpRoFUsyaBZHQKwfnJ3gUDd1fZQoaAZoCWgPQwgaiGUzh+QJwJSGlFKUaBVLMmgWR0CsHvchC+lCdX2UKGgGaAloD0MImgmGcw2TA8CUhpRSlGgVSzJoFkdArB3evStvGnV9lChoBmgJaA9DCLa93ZIc0A3AlIaUUpRoFUsyaBZHQKwhFGWD6Fd1fZQoaAZoCWgPQwgdy7vqAbMAwJSGlFKUaBVLMmgWR0CsIKL0z0pWdX2UKGgGaAloD0MIqn6l8+F5B8CUhpRSlGgVSzJoFkdArB/9a2WpqHV9lChoBmgJaA9DCMNF7unqjg3AlIaUUpRoFUsyaBZHQKwe5PepGWl1fZQoaAZoCWgPQwjzkCkfgioNwJSGlFKUaBVLMmgWR0CsIh9v0h/zdX2UKGgGaAloD0MIXvWAecjkE8CUhpRSlGgVSzJoFkdArCGt+qioKnV9lChoBmgJaA9DCFvri4S2/AXAlIaUUpRoFUsyaBZHQKwhCIldC3R1fZQoaAZoCWgPQwh6UiY1tBEQwJSGlFKUaBVLMmgWR0CsH+/779AHdX2UKGgGaAloD0MIAHUDBd5JBsCUhpRSlGgVSzJoFkdArCMx8WsRx3V9lChoBmgJaA9DCFdfXRWoJQnAlIaUUpRoFUsyaBZHQKwiwICU5dZ1fZQoaAZoCWgPQwgZyol2FeISwJSGlFKUaBVLMmgWR0CsIhsTFl06dX2UKGgGaAloD0MIqtIW1/gMCMCUhpRSlGgVSzJoFkdArCEClnAZbnV9lChoBmgJaA9DCHkkXp7O1QjAlIaUUpRoFUsyaBZHQKwkPBsQ/X51fZQoaAZoCWgPQwjfwrrx7hgRwJSGlFKUaBVLMmgWR0CsI8q6FuejdX2UKGgGaAloD0MIaqD5nLu9BMCUhpRSlGgVSzJoFkdArCMlSwW30HV9lChoBmgJaA9DCBCVRszsswbAlIaUUpRoFUsyaBZHQKwiDMSsbNt1fZQoaAZoCWgPQwhHO2743ZQPwJSGlFKUaBVLMmgWR0CsJT0H6dlNdX2UKGgGaAloD0MIiIOEKF/AEcCUhpRSlGgVSzJoFkdArCTLkn1FpnV9lChoBmgJaA9DCDvgumJG2APAlIaUUpRoFUsyaBZHQKwkJc2R7qp1fZQoaAZoCWgPQwjZQSWuY1wNwJSGlFKUaBVLMmgWR0CsIw16E8JVdX2UKGgGaAloD0MIXTP5Zpt7EcCUhpRSlGgVSzJoFkdArCZIJswcpHV9lChoBmgJaA9DCNXrFoGxnhXAlIaUUpRoFUsyaBZHQKwl1ryDqW11fZQoaAZoCWgPQwiRfZBlwcQHwJSGlFKUaBVLMmgWR0CsJTD6Fds0dX2UKGgGaAloD0MIXrwft1/+CsCUhpRSlGgVSzJoFkdArCQYeaKDTXV9lChoBmgJaA9DCMPTK2UZgg7AlIaUUpRoFUsyaBZHQKwnRltj0+V1fZQoaAZoCWgPQwiN0M/U67YBwJSGlFKUaBVLMmgWR0CsJtUfgaWHdX2UKGgGaAloD0MI/fZ14JyRDsCUhpRSlGgVSzJoFkdArCYvrhR64XV9lChoBmgJaA9DCLx2acNhaQHAlIaUUpRoFUsyaBZHQKwlF1pTMq11fZQoaAZoCWgPQwjV6qurAjUNwJSGlFKUaBVLMmgWR0CsKFULlV94dX2UKGgGaAloD0MIhnMNMzS+E8CUhpRSlGgVSzJoFkdArCfjtmcvunV9lChoBmgJaA9DCPwApDZxEgbAlIaUUpRoFUsyaBZHQKwnPfj0cwR1fZQoaAZoCWgPQwjxKQDGMygDwJSGlFKUaBVLMmgWR0CsJiXVCojwdX2UKGgGaAloD0MIIenTKvrjDMCUhpRSlGgVSzJoFkdArClSO938oHV9lChoBmgJaA9DCNUhN8MN2AHAlIaUUpRoFUsyaBZHQKwo4NtqHoJ1fZQoaAZoCWgPQwjr4ctEETIHwJSGlFKUaBVLMmgWR0CsKDtVBD5TdX2UKGgGaAloD0MIQtDRqpaUFMCUhpRSlGgVSzJoFkdArCci0+kgwHV9lChoBmgJaA9DCKZgjbPpaALAlIaUUpRoFUsyaBZHQKwqYcsDnvF1fZQoaAZoCWgPQwgibk4lA+AAwJSGlFKUaBVLMmgWR0CsKfBzV+ZxdX2UKGgGaAloD0MIceMW83MTE8CUhpRSlGgVSzJoFkdArClKtvGZNXV9lChoBmgJaA9DCMNF7unqjv6/lIaUUpRoFUsyaBZHQKwoMi8Fpwl1fZQoaAZoCWgPQwic3Vomw3EOwJSGlFKUaBVLMmgWR0CsK2d30PH1dX2UKGgGaAloD0MInbmHhO9dBcCUhpRSlGgVSzJoFkdArCr2GO+7DnV9lChoBmgJaA9DCNSbUfNVcvy/lIaUUpRoFUsyaBZHQKwqUGO+7Dl1fZQoaAZoCWgPQwibPdAKDCkUwJSGlFKUaBVLMmgWR0CsKTf7zkIYdX2UKGgGaAloD0MI4pLjTukgDsCUhpRSlGgVSzJoFkdArCyBxNqQBHV9lChoBmgJaA9DCApK0cq9UBPAlIaUUpRoFUsyaBZHQKwsEI8hcJN1fZQoaAZoCWgPQwicUl4roXsAwJSGlFKUaBVLMmgWR0CsK2swlByCdX2UKGgGaAloD0MI5qxPOSb7HMCUhpRSlGgVSzJoFkdArCpSqZML4XV9lChoBmgJaA9DCD9vKlJhrBPAlIaUUpRoFUsyaBZHQKwtkBBiTdN1fZQoaAZoCWgPQwjj4NIx59kTwJSGlFKUaBVLMmgWR0CsLR7EP1+RdX2UKGgGaAloD0MIB9MwfETcEMCUhpRSlGgVSzJoFkdArCx5Gz8gp3V9lChoBmgJaA9DCLxcxHdilg3AlIaUUpRoFUsyaBZHQKwrYMUh3aB1fZQoaAZoCWgPQwhiE5m5wAUDwJSGlFKUaBVLMmgWR0CsLpuwHJLedX2UKGgGaAloD0MImX/0TZrGDcCUhpRSlGgVSzJoFkdArC4qcbzbvnV9lChoBmgJaA9DCIL917lpMwTAlIaUUpRoFUsyaBZHQKwthNKyv9t1fZQoaAZoCWgPQwhFY+3vbA8BwJSGlFKUaBVLMmgWR0CsLGyBshxHdX2UKGgGaAloD0MItiv0wTL2/7+UhpRSlGgVSzJoFkdArC+e+IuXeHV9lChoBmgJaA9DCMqNImsNVRLAlIaUUpRoFUsyaBZHQKwvLbu+h5B1fZQoaAZoCWgPQwiaQBGLGNYBwJSGlFKUaBVLMmgWR0CsLof9Hc1wdX2UKGgGaAloD0MIDQBV3LhFCMCUhpRSlGgVSzJoFkdArC1vfO2RaHV9lChoBmgJaA9DCLvs153u/B7AlIaUUpRoFUsyaBZHQKwwshyKekJ1fZQoaAZoCWgPQwgjS+ZY3tULwJSGlFKUaBVLMmgWR0CsMECxeLNwdX2UKGgGaAloD0MIkBZnDHNiDsCUhpRSlGgVSzJoFkdArC+bCvX9SHV9lChoBmgJaA9DCCYYzjXMgBLAlIaUUpRoFUsyaBZHQKwugoZydWh1fZQoaAZoCWgPQwjk9ssnKxYTwJSGlFKUaBVLMmgWR0CsMcXUH6dldX2UKGgGaAloD0MIoRSt3AusCsCUhpRSlGgVSzJoFkdArDFUtNBWxXV9lChoBmgJaA9DCJ3xfXGp6gjAlIaUUpRoFUsyaBZHQKwwrvy9VWF1fZQoaAZoCWgPQwgwStBf6BH/v5SGlFKUaBVLMmgWR0CsL5a42CNCdX2UKGgGaAloD0MIc0pATMIlCMCUhpRSlGgVSzJoFkdArDLYkeIVM3V9lChoBmgJaA9DCEfjUL8L+wHAlIaUUpRoFUsyaBZHQKwyZyksSTR1fZQoaAZoCWgPQwgwZHWr5wQJwJSGlFKUaBVLMmgWR0CsMcHCoCMhdX2UKGgGaAloD0MIaoXpew0BCcCUhpRSlGgVSzJoFkdArDCpTAFgUnV9lChoBmgJaA9DCCoaa39nmw7AlIaUUpRoFUsyaBZHQKw0EtmL9/B1fZQoaAZoCWgPQwgqAMYzaOgSwJSGlFKUaBVLMmgWR0CsM6MGPgejdX2UKGgGaAloD0MIcQM+P4wwDsCUhpRSlGgVSzJoFkdArDL+FzuF6HV9lChoBmgJaA9DCB+DFadaawrAlIaUUpRoFUsyaBZHQKwx5nW8RL91fZQoaAZoCWgPQwhrt11orlMEwJSGlFKUaBVLMmgWR0CsNcKTKT0QdX2UKGgGaAloD0MIfxXgu807AsCUhpRSlGgVSzJoFkdArDVR+DvmYHV9lChoBmgJaA9DCJ8561OOeRfAlIaUUpRoFUsyaBZHQKw0rOpsGgV1fZQoaAZoCWgPQwjrGcIxyz4JwJSGlFKUaBVLMmgWR0CsM5VCojwAdX2UKGgGaAloD0MIW3o01ZP5E8CUhpRSlGgVSzJoFkdArDdwZ62OQ3V9lChoBmgJaA9DCFGC/kKPeAHAlIaUUpRoFUsyaBZHQKw2/5SFXaJ1fZQoaAZoCWgPQwiGyOnr+ToCwJSGlFKUaBVLMmgWR0CsNlp1ie/YdX2UKGgGaAloD0MIHAjJAiZQBsCUhpRSlGgVSzJoFkdArDVCpgkTpXV9lChoBmgJaA9DCJjD7juGJw7AlIaUUpRoFUsyaBZHQKw5MYAKfFt1fZQoaAZoCWgPQwiZY3lXPaADwJSGlFKUaBVLMmgWR0CsOMEIHC40dX2UKGgGaAloD0MIoN6Mmq+yA8CUhpRSlGgVSzJoFkdArDgcLlV94XV9lChoBmgJaA9DCMBfzJasSgrAlIaUUpRoFUsyaBZHQKw3BJK8L8d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (801 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.219281307188794, "std_reward": 0.8220586648155472, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T22:26:38.797651"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ceb991bfdf412ddabe94947d15265d95e5b2dcc51dd037fc1eba8961f465bcbf
3
+ size 3056