Push model using huggingface_hub.
Browse files
README.md
CHANGED
@@ -1,39 +1,9 @@
|
|
1 |
---
|
2 |
-
license: agpl-3.0
|
3 |
-
pipeline_tag: object-detection
|
4 |
tags:
|
5 |
-
- ultralytics
|
6 |
-
- yolo
|
7 |
-
- yolov8
|
8 |
- pytorch_model_hub_mixin
|
9 |
- model_hub_mixin
|
10 |
---
|
11 |
|
12 |
-
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
First install the package:
|
17 |
-
|
18 |
-
```bash
|
19 |
-
!pip install -q git+https://github.com/nielsrogge/ultralytics.git@feature/add_hf
|
20 |
-
```
|
21 |
-
|
22 |
-
## Usage
|
23 |
-
|
24 |
-
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI:
|
25 |
-
|
26 |
-
```python
|
27 |
-
from ultralytics import YOLO
|
28 |
-
|
29 |
-
# Load a model
|
30 |
-
model = YOLO.from_pretrained("nielsr/yolov8n")
|
31 |
-
|
32 |
-
# Use the model
|
33 |
-
model.train(data="coco128.yaml", epochs=3) # train the model
|
34 |
-
metrics = model.val() # evaluate model performance on the validation set
|
35 |
-
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
36 |
-
path = model.export(format="onnx") # export the model to ONNX format
|
37 |
-
```
|
38 |
-
|
39 |
-
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
|
|
|
1 |
---
|
|
|
|
|
2 |
tags:
|
|
|
|
|
|
|
3 |
- pytorch_model_hub_mixin
|
4 |
- model_hub_mixin
|
5 |
---
|
6 |
|
7 |
+
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
|
8 |
+
- Library: [More Information Needed]
|
9 |
+
- Docs: [More Information Needed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|