nielsr HF staff commited on
Commit
338f239
·
verified ·
1 Parent(s): fad7158

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -3
README.md CHANGED
@@ -1,9 +1,47 @@
1
  ---
 
 
2
  tags:
 
 
 
 
 
 
 
 
 
 
 
3
  - pytorch_model_hub_mixin
4
  - model_hub_mixin
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: agpl-3.0
3
+ pipeline_tag: object-detection
4
  tags:
5
+ - ultralytics
6
+ - yolo
7
+ - yolov8
8
+ - tracking
9
+ - instance-segmentation
10
+ - image-classification
11
+ - pose-estimation
12
+ - obb
13
+ - object-detection
14
+ - yolov3
15
+ - yolov5
16
  - pytorch_model_hub_mixin
17
  - model_hub_mixin
18
  ---
19
 
20
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration.
21
+
22
+ ## Installation
23
+
24
+ First install the package:
25
+
26
+ ```bash
27
+ !pip install -q git+https://github.com/nielsrogge/ultralytics.git@feature/add_hf
28
+ ```
29
+
30
+ ## Usage
31
+
32
+ YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI:
33
+
34
+ ```python
35
+ from ultralytics import YOLO
36
+
37
+ # Load a model
38
+ model = YOLO.from_pretrained("nielsr/yolov8n")
39
+
40
+ # Use the model
41
+ model.train(data="coco128.yaml", epochs=3) # train the model
42
+ metrics = model.val() # evaluate model performance on the validation set
43
+ results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
44
+ path = model.export(format="onnx") # export the model to ONNX format
45
+ ```
46
+
47
+ See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.