File size: 6,369 Bytes
cae28d7
c796a0b
 
 
cae28d7
c796a0b
 
 
fd2a799
 
 
 
 
 
cae28d7
 
 
 
 
 
 
 
c796a0b
 
 
 
cae28d7
c796a0b
cae28d7
c796a0b
 
 
cae28d7
 
 
 
 
1cec238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae28d7
c796a0b
cae28d7
c796a0b
cae28d7
c796a0b
cae28d7
c796a0b
7a7575a
 
 
c796a0b
cae28d7
c796a0b
cae28d7
 
c796a0b
cae28d7
c796a0b
 
 
cae28d7
 
 
 
 
 
 
c796a0b
cae28d7
c796a0b
 
cae28d7
 
 
 
 
c796a0b
 
 
cae28d7
c796a0b
 
cae28d7
 
 
c796a0b
cae28d7
c796a0b
cae28d7
c796a0b
cae28d7
c796a0b
cae28d7
c796a0b
cae28d7
 
c796a0b
cae28d7
c796a0b
 
cae28d7
 
 
 
 
 
 
c796a0b
 
cae28d7
 
 
c796a0b
 
 
cae28d7
 
 
c796a0b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
language:
- en
license: mit
library_name: transformers
metrics:
- f1
pipeline_tag: text2text-generation
base_model:
- google/flan-t5-xl
tags:
- sentiment-analysis
- target-sentiment-analysis
- prompt-tuning
---

# Model Card for Model ID

## Model Details

### Model Description

- **Developed by:** Reforged by [nicolay-r](https://github.com/nicolay-r), initial credits for implementation to [scofield7419](https://github.com/scofield7419)
- **Model type:** [Flan-T5](https://huggingface.co/docs/transformers/en/model_doc/flan-t5)
- **Language(s) (NLP):** English
- **License:** [Apache License 2.0](https://github.com/scofield7419/THOR-ISA/blob/main/LICENSE.txt)

### Model Sources

- **Repository:** [Reasoning-for-Sentiment-Analysis-Framework](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework)
- **Paper:** https://arxiv.org/abs/2404.12342
- **Demo:** We have a [code on Google-Colab for launching the related model](https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb)

## Uses

### Direct Use


Here are the **following two steps for a quick start with model application**:


1. Loading model and tokenizer:

```python
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration

# Setup model path.
model_path = "nicolay-r/flan-t5-tsa-prompt-base"
# Setup device.
device = "cuda:0"

model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.to(device)
```

2. Setup ask method for generating LLM responses:

```python
def ask(prompt):
  inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
  inputs.to(device)
  output = model.generate(**inputs, temperature=1)
  return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
```

Finally, you can infer model results as follows:

```python
# Input sentence.
sentence = "I would support him"
# Input target.
target = "him"
# output response
flant5_response = ask(f"What's the attitude of the sentence '{context}', to the target '{target}'?")
print(f"Author opinion towards `{target}` in `{sentence}` is:\n{flant5_response}")
```

The response of the model is as follows:
> Author opinion towards "him" in "I would support him despite his bad behavior." is: **positive**

### Downstream Use

Please refer to the [related section](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework?tab=readme-ov-file#three-hop-chain-of-thought-thor) of the **Reasoning-for-Sentiment-Analysis** Framework

With this example it applies this model (zero-shot-learning) in the `PROMPT` mode to the validation data of the RuSentNE-2023 competition for evaluation.

```sh
python thor_finetune.py -m "nicolay-r/flan-t5-tsa-prompt-xl" -r "prompt" \
    -p "What's the attitude of the sentence '{context}', to the target '{target}'?" \
    -d "rusentne2023" -z -bs 4 -f "./config/config.yaml"
```

Following the [Google Colab Notebook]((https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb)) for implementation reproduction.


### Out-of-Scope Use

This model represent a fine-tuned version of the Flan-T5 on RuSentNE-2023 dataset.
Since dataset represent three-scale output answers (`positive`, `negative`, `neutral`), 
the behavior in general might be biased to this particular task.

### Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Please proceed with the code from the related [Three-Hop-Reasoning CoT](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework?tab=readme-ov-file#three-hop-chain-of-thought-thor) section.

Or following the related section on [Google Colab notebook](https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb
)

## Training Details

### Training Data

We utilize `train` data which was **automatically translated into English using GoogleTransAPI**. 
The initial source of the texts written in Russian, is from the following repository:
https://github.com/dialogue-evaluation/RuSentNE-evaluation

The translated version on the dataset in English could be automatically downloaded via the following script:
https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/rusentne23_download.py

### Training Procedure

This model has been trained using the PROMPT-finetuning.

For training procedure accomplishing, the [reforged version of THoR framework](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework)

[Google-colab notebook](https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb) could be used for reproduction.

The overall training process took **3 epochs**.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/yemsl0unhvyOBBdbKbbaj.png)


#### Training Hyperparameters

- **Training regime:** All the configuration details were highlighted in the related
 [config](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/config/config.yaml) file

## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data

The direct link to the `test` evaluation data:
https://github.com/dialogue-evaluation/RuSentNE-evaluation/blob/main/final_data.csv

#### Metrics

For the model evaluation, two metrics were used:
1. F1_PN -- F1-measure over `positive` and `negative` classes;
2. F1_PN0 -- F1-measure over `positive`, `negative`, **and `neutral`** classes;

### Results

The test evaluation for this model [showcases](https://arxiv.org/abs/2404.12342) the F1_PN = 60.024

Below is the log of the training process that showcases the final peformance on the RuSentNE-2023 `test` set after 4 epochs (lines 5-6):
```tsv
  F1_PN  F1_PN0  default   mode
0  66.678  73.838   73.838  valid
1  68.019  74.816   74.816  valid
2  67.870  74.688   74.688  valid
3  65.090  72.449   72.449   test
4  65.090  72.449   72.449   test
```