File size: 6,369 Bytes
cae28d7 c796a0b cae28d7 c796a0b fd2a799 cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 1cec238 cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b 7a7575a c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b cae28d7 c796a0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
---
language:
- en
license: mit
library_name: transformers
metrics:
- f1
pipeline_tag: text2text-generation
base_model:
- google/flan-t5-xl
tags:
- sentiment-analysis
- target-sentiment-analysis
- prompt-tuning
---
# Model Card for Model ID
## Model Details
### Model Description
- **Developed by:** Reforged by [nicolay-r](https://github.com/nicolay-r), initial credits for implementation to [scofield7419](https://github.com/scofield7419)
- **Model type:** [Flan-T5](https://huggingface.co/docs/transformers/en/model_doc/flan-t5)
- **Language(s) (NLP):** English
- **License:** [Apache License 2.0](https://github.com/scofield7419/THOR-ISA/blob/main/LICENSE.txt)
### Model Sources
- **Repository:** [Reasoning-for-Sentiment-Analysis-Framework](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework)
- **Paper:** https://arxiv.org/abs/2404.12342
- **Demo:** We have a [code on Google-Colab for launching the related model](https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb)
## Uses
### Direct Use
Here are the **following two steps for a quick start with model application**:
1. Loading model and tokenizer:
```python
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
# Setup model path.
model_path = "nicolay-r/flan-t5-tsa-prompt-base"
# Setup device.
device = "cuda:0"
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.to(device)
```
2. Setup ask method for generating LLM responses:
```python
def ask(prompt):
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
inputs.to(device)
output = model.generate(**inputs, temperature=1)
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
```
Finally, you can infer model results as follows:
```python
# Input sentence.
sentence = "I would support him"
# Input target.
target = "him"
# output response
flant5_response = ask(f"What's the attitude of the sentence '{context}', to the target '{target}'?")
print(f"Author opinion towards `{target}` in `{sentence}` is:\n{flant5_response}")
```
The response of the model is as follows:
> Author opinion towards "him" in "I would support him despite his bad behavior." is: **positive**
### Downstream Use
Please refer to the [related section](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework?tab=readme-ov-file#three-hop-chain-of-thought-thor) of the **Reasoning-for-Sentiment-Analysis** Framework
With this example it applies this model (zero-shot-learning) in the `PROMPT` mode to the validation data of the RuSentNE-2023 competition for evaluation.
```sh
python thor_finetune.py -m "nicolay-r/flan-t5-tsa-prompt-xl" -r "prompt" \
-p "What's the attitude of the sentence '{context}', to the target '{target}'?" \
-d "rusentne2023" -z -bs 4 -f "./config/config.yaml"
```
Following the [Google Colab Notebook]((https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb)) for implementation reproduction.
### Out-of-Scope Use
This model represent a fine-tuned version of the Flan-T5 on RuSentNE-2023 dataset.
Since dataset represent three-scale output answers (`positive`, `negative`, `neutral`),
the behavior in general might be biased to this particular task.
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Please proceed with the code from the related [Three-Hop-Reasoning CoT](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework?tab=readme-ov-file#three-hop-chain-of-thought-thor) section.
Or following the related section on [Google Colab notebook](https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb
)
## Training Details
### Training Data
We utilize `train` data which was **automatically translated into English using GoogleTransAPI**.
The initial source of the texts written in Russian, is from the following repository:
https://github.com/dialogue-evaluation/RuSentNE-evaluation
The translated version on the dataset in English could be automatically downloaded via the following script:
https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/rusentne23_download.py
### Training Procedure
This model has been trained using the PROMPT-finetuning.
For training procedure accomplishing, the [reforged version of THoR framework](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework)
[Google-colab notebook](https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb) could be used for reproduction.
The overall training process took **3 epochs**.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/yemsl0unhvyOBBdbKbbaj.png)
#### Training Hyperparameters
- **Training regime:** All the configuration details were highlighted in the related
[config](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/config/config.yaml) file
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
The direct link to the `test` evaluation data:
https://github.com/dialogue-evaluation/RuSentNE-evaluation/blob/main/final_data.csv
#### Metrics
For the model evaluation, two metrics were used:
1. F1_PN -- F1-measure over `positive` and `negative` classes;
2. F1_PN0 -- F1-measure over `positive`, `negative`, **and `neutral`** classes;
### Results
The test evaluation for this model [showcases](https://arxiv.org/abs/2404.12342) the F1_PN = 60.024
Below is the log of the training process that showcases the final peformance on the RuSentNE-2023 `test` set after 4 epochs (lines 5-6):
```tsv
F1_PN F1_PN0 default mode
0 66.678 73.838 73.838 valid
1 68.019 74.816 74.816 valid
2 67.870 74.688 74.688 valid
3 65.090 72.449 72.449 test
4 65.090 72.449 72.449 test
``` |