File size: 2,423 Bytes
238558d
f80e06c
238558d
 
 
 
2a66bc7
 
 
 
 
238558d
 
 
 
 
 
 
 
f80e06c
238558d
 
 
2a66bc7
 
 
 
 
 
238558d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f80e06c
238558d
 
 
 
 
 
 
2a66bc7
 
 
 
 
 
 
 
 
 
 
 
 
238558d
 
f80e06c
238558d
 
 
f80e06c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: peft
license: apache-2.0
base_model: facebook/dinov2-small
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: dinov2_LoRA_Liveness_detection_v1.0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/nguyenkhoaht002/liveness_detection/runs/qt5odc7e)
# dinov2_LoRA_Liveness_detection_v1.0

This model is a fine-tuned version of [facebook/dinov2-small](https://huggingface.co/facebook/dinov2-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0073
- Accuracy: 0.9979
- F1: 0.9979
- Recall: 0.9979
- Precision: 0.9979

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 512
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     | Recall | Precision |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.0256        | 0.4076 | 64   | 0.0211          | 0.9931   | 0.9931 | 0.9931 | 0.9931    |
| 0.0164        | 0.8153 | 128  | 0.0153          | 0.9943   | 0.9943 | 0.9943 | 0.9943    |
| 0.0073        | 1.2229 | 192  | 0.0116          | 0.9962   | 0.9962 | 0.9962 | 0.9962    |
| 0.0073        | 1.6306 | 256  | 0.0073          | 0.9974   | 0.9974 | 0.9974 | 0.9974    |
| 0.0082        | 2.0382 | 320  | 0.0076          | 0.9977   | 0.9977 | 0.9977 | 0.9977    |
| 0.0048        | 2.4459 | 384  | 0.0070          | 0.9977   | 0.9977 | 0.9977 | 0.9977    |
| 0.0019        | 2.8535 | 448  | 0.0073          | 0.9979   | 0.9979 | 0.9979 | 0.9979    |


### Framework versions

- PEFT 0.14.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1