--- library_name: transformers license: apache-2.0 base_model: facebook/dinov2-small tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: dinov2_Liveness_detection_v2.2 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/nguyenkhoaht002/liveness_detection/runs/b39fcrkm) # dinov2_Liveness_detection_v2.2 This model is a fine-tuned version of [facebook/dinov2-small](https://huggingface.co/facebook/dinov2-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1307 - Accuracy: 0.9781 - F1: 0.9781 - Recall: 0.9781 - Precision: 0.9783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.3279 | 0.2048 | 128 | 0.2858 | 0.8749 | 0.8772 | 0.8749 | 0.8773 | | 0.2389 | 0.4096 | 256 | 0.2696 | 0.8881 | 0.8819 | 0.8881 | 0.9196 | | 0.186 | 0.6144 | 384 | 0.1614 | 0.9383 | 0.9386 | 0.9383 | 0.9381 | | 0.2048 | 0.8192 | 512 | 0.1568 | 0.9404 | 0.9411 | 0.9404 | 0.9415 | | 0.1662 | 1.024 | 640 | 0.1474 | 0.9426 | 0.9433 | 0.9426 | 0.9436 | | 0.1257 | 1.2288 | 768 | 0.1186 | 0.9578 | 0.9573 | 0.9578 | 0.9604 | | 0.1215 | 1.4336 | 896 | 0.1202 | 0.9556 | 0.9560 | 0.9556 | 0.9561 | | 0.0917 | 1.6384 | 1024 | 0.1045 | 0.9611 | 0.9611 | 0.9611 | 0.9611 | | 0.1256 | 1.8432 | 1152 | 0.0971 | 0.9633 | 0.9630 | 0.9633 | 0.9645 | | 0.0676 | 2.048 | 1280 | 0.1524 | 0.9487 | 0.9477 | 0.9487 | 0.9545 | | 0.0458 | 2.2528 | 1408 | 0.1149 | 0.9641 | 0.9643 | 0.9641 | 0.9642 | | 0.0462 | 2.4576 | 1536 | 0.1233 | 0.9630 | 0.9632 | 0.9630 | 0.9631 | | 0.0453 | 2.6624 | 1664 | 0.1030 | 0.9671 | 0.9670 | 0.9671 | 0.9679 | | 0.0631 | 2.8672 | 1792 | 0.0896 | 0.967 | 0.9672 | 0.967 | 0.9671 | | 0.0358 | 3.072 | 1920 | 0.0966 | 0.9735 | 0.9734 | 0.9735 | 0.9738 | | 0.0229 | 3.2768 | 2048 | 0.1250 | 0.9675 | 0.9676 | 0.9675 | 0.9676 | | 0.0272 | 3.4816 | 2176 | 0.1148 | 0.9691 | 0.9693 | 0.9691 | 0.9692 | | 0.0253 | 3.6864 | 2304 | 0.1130 | 0.9757 | 0.9755 | 0.9757 | 0.9761 | | 0.0249 | 3.8912 | 2432 | 0.1091 | 0.9716 | 0.9717 | 0.9716 | 0.9715 | | 0.0049 | 4.096 | 2560 | 0.1420 | 0.9756 | 0.9756 | 0.9756 | 0.9755 | | 0.0159 | 4.3008 | 2688 | 0.1423 | 0.9775 | 0.9774 | 0.9775 | 0.9777 | | 0.0026 | 4.5056 | 2816 | 0.1454 | 0.9774 | 0.9773 | 0.9774 | 0.9776 | | 0.0059 | 4.7104 | 2944 | 0.1445 | 0.9785 | 0.9785 | 0.9785 | 0.9785 | | 0.0011 | 4.9152 | 3072 | 0.1307 | 0.9781 | 0.9781 | 0.9781 | 0.9783 | ### Evaluate results - Accuaracy: 0.81 - F1: 0.86 - Recall: 0.85 - Precision: 0.65 - APCER: 0.2001 - BPCER: 0.1458 - ACER: 0.1729 ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1