File size: 3,630 Bytes
d02f9f3
90fe690
d02f9f3
 
 
 
 
 
 
 
 
 
 
 
90fe690
 
10a8abc
 
d02f9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90fe690
d02f9f3
 
90fe690
 
d02f9f3
 
 
10a8abc
d02f9f3
 
 
 
90fe690
 
10a8abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d02f9f3
 
 
 
90fe690
 
d02f9f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
model-index:
- name: test_bug2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test_bug2

This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2977
- Wer: 0.1839

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1568        | 0.27  | 50   | 0.2764          | 0.1985 |
| 0.0979        | 0.53  | 100  | 0.2421          | 0.1813 |
| 0.1018        | 0.8   | 150  | 0.2420          | 0.1809 |
| 0.1011        | 1.07  | 200  | 0.2520          | 0.1992 |
| 0.0947        | 1.34  | 250  | 0.2580          | 0.1885 |
| 0.1077        | 1.6   | 300  | 0.2641          | 0.2001 |
| 0.109         | 1.87  | 350  | 0.3196          | 0.2156 |
| 0.1239        | 2.14  | 400  | 0.3298          | 0.2163 |
| 0.1286        | 2.41  | 450  | 0.3392          | 0.2436 |
| 0.1515        | 2.67  | 500  | 0.3821          | 0.2450 |
| 0.157         | 2.94  | 550  | 0.3771          | 0.2521 |
| 0.1296        | 3.21  | 600  | 0.3917          | 0.2541 |
| 0.1351        | 3.48  | 650  | 0.3670          | 0.2366 |
| 0.1387        | 3.74  | 700  | 0.3503          | 0.2347 |
| 0.1336        | 4.01  | 750  | 0.4018          | 0.2627 |
| 0.114         | 4.28  | 800  | 0.3699          | 0.2723 |
| 0.1254        | 4.54  | 850  | 0.3395          | 0.2404 |
| 0.119         | 4.81  | 900  | 0.3410          | 0.2340 |
| 0.1           | 5.08  | 950  | 0.3302          | 0.2216 |
| 0.0968        | 5.35  | 1000 | 0.3346          | 0.2255 |
| 0.0965        | 5.61  | 1050 | 0.3144          | 0.2140 |
| 0.0906        | 5.88  | 1100 | 0.3277          | 0.2109 |
| 0.0968        | 6.15  | 1150 | 0.3300          | 0.2141 |
| 0.0818        | 6.42  | 1200 | 0.3272          | 0.2085 |
| 0.0836        | 6.68  | 1250 | 0.3177          | 0.2014 |
| 0.0803        | 6.95  | 1300 | 0.3185          | 0.2005 |
| 0.0727        | 7.22  | 1350 | 0.3110          | 0.1928 |
| 0.0687        | 7.49  | 1400 | 0.3118          | 0.1965 |
| 0.0698        | 7.75  | 1450 | 0.3170          | 0.1955 |
| 0.0651        | 8.02  | 1500 | 0.3119          | 0.1929 |
| 0.0648        | 8.29  | 1550 | 0.3058          | 0.1904 |
| 0.0612        | 8.56  | 1600 | 0.3087          | 0.1935 |
| 0.0578        | 8.82  | 1650 | 0.3076          | 0.1871 |
| 0.0557        | 9.09  | 1700 | 0.3037          | 0.1862 |
| 0.0542        | 9.36  | 1750 | 0.2990          | 0.1858 |
| 0.0551        | 9.62  | 1800 | 0.2962          | 0.1837 |
| 0.0514        | 9.89  | 1850 | 0.2977          | 0.1839 |


### Framework versions

- Transformers 4.16.0
- Pytorch 1.13.1+cu116
- Datasets 1.18.3
- Tokenizers 0.12.1