newbie4000 commited on
Commit
a1b4a07
·
1 Parent(s): 47b3938

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 843.40 +/- 52.03
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21753504192709b529ccf50f8d5cbb2b3a4d9ad64576deb3e89f3ee76de0e609
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6149f5e820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6149f5e8b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6149f5e940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6149f5e9d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6149f5ea60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6149f5eaf0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6149f5eb80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6149f5ec10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6149f5eca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6149f5ed30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6149f5edc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6149f5ee50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6149f5b660>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674493805529952260,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABrLLL+HXx1AxhpSvlSZQj2rdVe+DmmYvlG9tTvPKra9UdKYviVkPr8ZDue+HCLxvPc1pj6BTGe/RYvGPk0JTT7bg6y/BTaJvwv10j4Cjom+SljWvkLNbr8sy82+P4VjPQeMqj7Ndq8+9VSaPvmtvD4Wq1K/FCbGP0ds9D7B/Le+LGAVPrjg6j1nexG+00yEvocu9D7Gsw89/7sFvypKF72aSTS+Q0s6PcpFJT9oYoE9Explv8XSGD0PIxY/JaxSPTuTor6qoj89kI2gvi90t7wHjKo+zXavPvVUmj75rbw+EVmzP7ZPyj9MT+0+yRkNQMxVI8D9RZQ/VJTyvoYX3r8ag4W+x3+ZP/Yt9j8tC0y+NbSQP3njN784hDw/P5DHvBJOPT+p95G/CW3wvYVeW77JXac/TUaYPsZmq77GW4E+B4yqPs12rz71VJo+iqstwAOdIr/LBfI/sR+YPh4ENj5q5Hk/3LQBPWoLjD6pFKK+3qELvvpTf7/53xe+5hI2v3TnWj6h2NW+E3vcPjOmuDphRsi/Sl+9OpZyHj/BPO+9rzKvPi4vRb+yNta+oCuivQeMqj7Ndq8+9VSaPvmtvD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAArwJq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbcAUPQAAAAAyPQHAAAAAAGLqG70AAAAA9kf4PwAAAAAeleO8AAAAADuo8D8AAAAANzjEPQAAAACRh/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL48FNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEO0nbsAAAAAFnn5vwAAAACepfo8AAAAALWG2z8AAAAAj6dEvQAAAAArSNo/AAAAAPb/0b0AAAAA/FLivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA57l7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvItA9AAAAAM6B5r8AAAAAeWcgvAAAAAATuOc/AAAAAKsw3TwAAAAAXFfuPwAAAACXDOA9AAAAAGjN7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACy6522AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANweoPQAAAAA4u/O/AAAAAKgV470AAAAALv7wPwAAAACf0829AAAAANre8z8AAAAA/YC9vQAAAADGKgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIWENJSR8tyMAWyUTegDjAF0lEdArFjSUkfLcXV9lChoBkdAiNR7gjyFwmgHTegDaAhHQKxbumce8wp1fZQoaAZHQIoC3rpqynloB03oA2gIR0CsXa4t6HCXdX2UKGgGR0CIODc/t6X0aAdN6ANoCEdArF9iB7NSqHV9lChoBkdAi5r1psXSB2gHTegDaAhHQKxkvdbgTAZ1fZQoaAZHQIvXqdMCcPRoB03oA2gIR0CsZ5Gk30f6dX2UKGgGR0CJjK+t8uzyaAdN6ANoCEdArGmDUd7v5XV9lChoBkdAicBXXqZ+hGgHTegDaAhHQKxrSuwosqd1fZQoaAZHQIkfUxO+IuZoB03oA2gIR0CscNdtuUD/dX2UKGgGR0CDwYPsiSq3aAdN6ANoCEdArHPDR8c+7nV9lChoBkdAjTQ0Gu9vj2gHTegDaAhHQKx1vkjopx51fZQoaAZHQISS2i8FpwloB03oA2gIR0Csd3loUSIydX2UKGgGR0CD/nAC4jKQaAdN6ANoCEdArHzrKzRhMXV9lChoBkdAizjE4vN/v2gHTegDaAhHQKx/4T8pCrt1fZQoaAZHQIousj9n9NxoB03oA2gIR0CsgfNNi6QOdX2UKGgGR0CNU/5oGpuNaAdN6ANoCEdArIO8AeaKDXV9lChoBkdAjNM8RL9MsmgHTegDaAhHQKyJURcu8K51fZQoaAZHQI2qTvw3HaNoB03oA2gIR0CsjFW12JSBdX2UKGgGR0CNi7AKv3ajaAdN6ANoCEdArI5ljVhCt3V9lChoBkdAjQc59/jKgmgHTegDaAhHQKyQGJ/oaDR1fZQoaAZHQI0V0Z3s5XFoB03oA2gIR0CslZRYJVsDdX2UKGgGR0CKPx+uNgjRaAdN6ANoCEdArJiC88La3HV9lChoBkdAi5q7OeJ53WgHTegDaAhHQKyahglWwNd1fZQoaAZHQIfOrMJQcghoB03oA2gIR0CsnEtahYeUdX2UKGgGR0CMgAPe54GEaAdN6ANoCEdArKHk2kzoEHV9lChoBkdAjh+x2B8QZmgHTegDaAhHQKyk75Qgs9V1fZQoaAZHQI0l/NFBppNoB03oA2gIR0Cspv+sHSncdX2UKGgGR0CMjWy0KJEZaAdN6ANoCEdArKjB6a9bo3V9lChoBkdAi7Ys/pt78mgHTegDaAhHQKyujuIhyKh1fZQoaAZHQIuLeJ53TuxoB03oA2gIR0CsscomXw9adX2UKGgGR0CJWrmPHT7VaAdN6ANoCEdArLPQwdsBQ3V9lChoBkdAi8ySJKraNGgHTegDaAhHQKy1qyM1jy51fZQoaAZHQIl/EiD/VAloB03oA2gIR0Csu3VqFh5PdX2UKGgGR0CG/1T4L1EmaAdN6ANoCEdArL51QqI8AHV9lChoBkdAhCTYXfqHGmgHTegDaAhHQKzAhmA9V3l1fZQoaAZHQIleB3Roh6loB03oA2gIR0CswlpaaCtjdX2UKGgGR0CJCAB7u2JBaAdN6ANoCEdArMgGTs6aLHV9lChoBkdAjCcH8sMAm2gHTegDaAhHQKzK/vKEFnt1fZQoaAZHQIsqquloDgZoB03oA2gIR0CszRSmygPFdX2UKGgGR0CI72TlDF6zaAdN6ANoCEdArM7wDklu33V9lChoBkdAiAGoi9qUNmgHTegDaAhHQKzUg9ZA6dV1fZQoaAZHQImr/lbNbC9oB03oA2gIR0Cs152BreqJdX2UKGgGR0CGh1v0h/y5aAdN6ANoCEdArNm79uP3jHV9lChoBkdAg7zhjWkJr2gHTegDaAhHQKzbmUpNKyx1fZQoaAZHQH49IA0bcXZoB03oA2gIR0Cs4Uu+ZgG9dX2UKGgGR0CMNqu3c580aAdN6ANoCEdArOSHeHi3onV9lChoBkdAjGDipeeFtmgHTegDaAhHQKzmtGWldkd1fZQoaAZHQIvAJ+UhV2loB03oA2gIR0Cs6KQNTcZcdX2UKGgGR0CK51J4B3iaaAdN6ANoCEdArO5JNfw7T3V9lChoBkdAiyUTibUgCGgHTegDaAhHQKzxQNZvDP51fZQoaAZHQIyvFJQLux9oB03oA2gIR0Cs808fvF3qdX2UKGgGR0CKQCUr08NhaAdN6ANoCEdArPUicwxnF3V9lChoBkdAiaYd6sySFGgHTegDaAhHQKz6zLoOhCd1fZQoaAZHQIaW9MEidJ9oB03oA2gIR0Cs/dDa4+bFdX2UKGgGR0CLyeAe7tiQaAdN6ANoCEdArP/31FpfyHV9lChoBkdAi1ykhRqGlGgHTegDaAhHQK0BzFwT/Q11fZQoaAZHQIujlBppN9JoB03oA2gIR0CtB63xOLzgdX2UKGgGR0CMcTollbu/aAdN6ANoCEdArQq6URnOB3V9lChoBkdAiGcI4MnZ02gHTegDaAhHQK0NaZ4Oc2B1fZQoaAZHQIbikdzXBgxoB03oA2gIR0CtEBEm6XjVdX2UKGgGR0CJobShrWRSaAdN6ANoCEdArRf2xbB42XV9lChoBkdAihPHARChOGgHTegDaAhHQK0a/NSIgvF1fZQoaAZHQIvVCN0eU6hoB03oA2gIR0CtHQE0zj3mdX2UKGgGR0CMpBygf2boaAdN6ANoCEdArR7OT1TR6XV9lChoBkdAiTYdUjs2N2gHTegDaAhHQK0ktujRD1J1fZQoaAZHQIsxmDcuandoB03oA2gIR0CtJ8IJAt4BdX2UKGgGR0CKGRjH4oJBaAdN6ANoCEdArSnUmtyPuHV9lChoBkdAiHDEovzvqmgHTegDaAhHQK0rkzqrzXl1fZQoaAZHQItvHffoA4poB03oA2gIR0CtMTjvd/KAdX2UKGgGR0CJ9WvMbFS9aAdN6ANoCEdArTQzn1WbPXV9lChoBkdAiGjCADq4Y2gHTegDaAhHQK02M1tO2y91fZQoaAZHQIjzYvDgqExoB03oA2gIR0CtN+4s3AEddX2UKGgGR0CKnZwob4rSaAdN6ANoCEdArT1OHk92YHV9lChoBkdAicXe7UXpGGgHTegDaAhHQK1AQ4b0e2d1fZQoaAZHQI0YklzEJjVoB03oA2gIR0CtQk3Gff4zdX2UKGgGR0CJQCY+jdpJaAdN6ANoCEdArUQMP8Q7LnV9lChoBkdAitw4R28qWmgHTegDaAhHQK1JmglF+d91fZQoaAZHQIuI6hi9ZidoB03oA2gIR0CtTJnfVI7OdX2UKGgGR0CL8aEPlMh6aAdN6ANoCEdArU6RW1c+q3V9lChoBkdAi/lt6X0GvGgHTegDaAhHQK1QXudf9gp1fZQoaAZHQIfFNXq7iAFoB03oA2gIR0CtVgAMtseodX2UKGgGR0CKlCwYcebNaAdN6ANoCEdArVjyiVSn+HV9lChoBkdAimXUPH1e0GgHTegDaAhHQK1bBYywfQt1fZQoaAZHQIv7eGj9GZxoB03oA2gIR0CtXNa1b7j1dX2UKGgGR0CKkrN0vGp/aAdN6ANoCEdArWJkRDkU9XV9lChoBkdAiIkVzhgmZ2gHTegDaAhHQK1lT4B3iaR1fZQoaAZHQIzYjAgxJuloB03oA2gIR0CtZ1U3fhuPdX2UKGgGR0CKsnCbc45taAdN6ANoCEdArWkf9cbBGnV9lChoBkdAi9q9i2DxsmgHTegDaAhHQK1umcawUxp1fZQoaAZHQIlpnPJJXhhoB03oA2gIR0CtcZ0AcT8HdX2UKGgGR0CKKZag2606aAdN6ANoCEdArXO7p3X7L3V9lChoBkdAh07/29L6DWgHTegDaAhHQK11ggi/wiJ1fZQoaAZHQIddl7OVxCJoB03oA2gIR0CtevsPJ7swdX2UKGgGR0CFOokzoEB9aAdN6ANoCEdArX4RrSE123V9lChoBkdAirawbEP1+WgHTegDaAhHQK2AHGLDQ7d1fZQoaAZHQInTkQNCqp9oB03oA2gIR0CtgeyzXz19dX2UKGgGR0CGKj238XN1aAdN6ANoCEdArYdWx6fJ3nV9lChoBkdAiaV5qubI92gHTegDaAhHQK2KOZmZmZp1fZQoaAZHQIn5R0nw5NpoB03oA2gIR0CtjDIldC3PdX2UKGgGR0CKywoPTXrdaAdN6ANoCEdArY3trM1TBXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.98,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e95f98ba92bad3c4887258a9ac4ddd8cbd03d58ec981dae77c6677d651336255
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62ee999b08de908c1409b6c6bf08fc661991ec853dd0a9dd2fe0b70e8012f308
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6149f5e820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6149f5e8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6149f5e940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6149f5e9d0>", "_build": "<function ActorCriticPolicy._build at 0x7f6149f5ea60>", "forward": "<function ActorCriticPolicy.forward at 0x7f6149f5eaf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6149f5eb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6149f5ec10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6149f5eca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6149f5ed30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6149f5edc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6149f5ee50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6149f5b660>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674493805529952260, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABrLLL+HXx1AxhpSvlSZQj2rdVe+DmmYvlG9tTvPKra9UdKYviVkPr8ZDue+HCLxvPc1pj6BTGe/RYvGPk0JTT7bg6y/BTaJvwv10j4Cjom+SljWvkLNbr8sy82+P4VjPQeMqj7Ndq8+9VSaPvmtvD4Wq1K/FCbGP0ds9D7B/Le+LGAVPrjg6j1nexG+00yEvocu9D7Gsw89/7sFvypKF72aSTS+Q0s6PcpFJT9oYoE9Explv8XSGD0PIxY/JaxSPTuTor6qoj89kI2gvi90t7wHjKo+zXavPvVUmj75rbw+EVmzP7ZPyj9MT+0+yRkNQMxVI8D9RZQ/VJTyvoYX3r8ag4W+x3+ZP/Yt9j8tC0y+NbSQP3njN784hDw/P5DHvBJOPT+p95G/CW3wvYVeW77JXac/TUaYPsZmq77GW4E+B4yqPs12rz71VJo+iqstwAOdIr/LBfI/sR+YPh4ENj5q5Hk/3LQBPWoLjD6pFKK+3qELvvpTf7/53xe+5hI2v3TnWj6h2NW+E3vcPjOmuDphRsi/Sl+9OpZyHj/BPO+9rzKvPi4vRb+yNta+oCuivQeMqj7Ndq8+9VSaPvmtvD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAArwJq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbcAUPQAAAAAyPQHAAAAAAGLqG70AAAAA9kf4PwAAAAAeleO8AAAAADuo8D8AAAAANzjEPQAAAACRh/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL48FNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEO0nbsAAAAAFnn5vwAAAACepfo8AAAAALWG2z8AAAAAj6dEvQAAAAArSNo/AAAAAPb/0b0AAAAA/FLivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA57l7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvItA9AAAAAM6B5r8AAAAAeWcgvAAAAAATuOc/AAAAAKsw3TwAAAAAXFfuPwAAAACXDOA9AAAAAGjN7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACy6522AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANweoPQAAAAA4u/O/AAAAAKgV470AAAAALv7wPwAAAACf0829AAAAANre8z8AAAAA/YC9vQAAAADGKgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIWENJSR8tyMAWyUTegDjAF0lEdArFjSUkfLcXV9lChoBkdAiNR7gjyFwmgHTegDaAhHQKxbumce8wp1fZQoaAZHQIoC3rpqynloB03oA2gIR0CsXa4t6HCXdX2UKGgGR0CIODc/t6X0aAdN6ANoCEdArF9iB7NSqHV9lChoBkdAi5r1psXSB2gHTegDaAhHQKxkvdbgTAZ1fZQoaAZHQIvXqdMCcPRoB03oA2gIR0CsZ5Gk30f6dX2UKGgGR0CJjK+t8uzyaAdN6ANoCEdArGmDUd7v5XV9lChoBkdAicBXXqZ+hGgHTegDaAhHQKxrSuwosqd1fZQoaAZHQIkfUxO+IuZoB03oA2gIR0CscNdtuUD/dX2UKGgGR0CDwYPsiSq3aAdN6ANoCEdArHPDR8c+7nV9lChoBkdAjTQ0Gu9vj2gHTegDaAhHQKx1vkjopx51fZQoaAZHQISS2i8FpwloB03oA2gIR0Csd3loUSIydX2UKGgGR0CD/nAC4jKQaAdN6ANoCEdArHzrKzRhMXV9lChoBkdAizjE4vN/v2gHTegDaAhHQKx/4T8pCrt1fZQoaAZHQIousj9n9NxoB03oA2gIR0CsgfNNi6QOdX2UKGgGR0CNU/5oGpuNaAdN6ANoCEdArIO8AeaKDXV9lChoBkdAjNM8RL9MsmgHTegDaAhHQKyJURcu8K51fZQoaAZHQI2qTvw3HaNoB03oA2gIR0CsjFW12JSBdX2UKGgGR0CNi7AKv3ajaAdN6ANoCEdArI5ljVhCt3V9lChoBkdAjQc59/jKgmgHTegDaAhHQKyQGJ/oaDR1fZQoaAZHQI0V0Z3s5XFoB03oA2gIR0CslZRYJVsDdX2UKGgGR0CKPx+uNgjRaAdN6ANoCEdArJiC88La3HV9lChoBkdAi5q7OeJ53WgHTegDaAhHQKyahglWwNd1fZQoaAZHQIfOrMJQcghoB03oA2gIR0CsnEtahYeUdX2UKGgGR0CMgAPe54GEaAdN6ANoCEdArKHk2kzoEHV9lChoBkdAjh+x2B8QZmgHTegDaAhHQKyk75Qgs9V1fZQoaAZHQI0l/NFBppNoB03oA2gIR0Cspv+sHSncdX2UKGgGR0CMjWy0KJEZaAdN6ANoCEdArKjB6a9bo3V9lChoBkdAi7Ys/pt78mgHTegDaAhHQKyujuIhyKh1fZQoaAZHQIuLeJ53TuxoB03oA2gIR0CsscomXw9adX2UKGgGR0CJWrmPHT7VaAdN6ANoCEdArLPQwdsBQ3V9lChoBkdAi8ySJKraNGgHTegDaAhHQKy1qyM1jy51fZQoaAZHQIl/EiD/VAloB03oA2gIR0Csu3VqFh5PdX2UKGgGR0CG/1T4L1EmaAdN6ANoCEdArL51QqI8AHV9lChoBkdAhCTYXfqHGmgHTegDaAhHQKzAhmA9V3l1fZQoaAZHQIleB3Roh6loB03oA2gIR0CswlpaaCtjdX2UKGgGR0CJCAB7u2JBaAdN6ANoCEdArMgGTs6aLHV9lChoBkdAjCcH8sMAm2gHTegDaAhHQKzK/vKEFnt1fZQoaAZHQIsqquloDgZoB03oA2gIR0CszRSmygPFdX2UKGgGR0CI72TlDF6zaAdN6ANoCEdArM7wDklu33V9lChoBkdAiAGoi9qUNmgHTegDaAhHQKzUg9ZA6dV1fZQoaAZHQImr/lbNbC9oB03oA2gIR0Cs152BreqJdX2UKGgGR0CGh1v0h/y5aAdN6ANoCEdArNm79uP3jHV9lChoBkdAg7zhjWkJr2gHTegDaAhHQKzbmUpNKyx1fZQoaAZHQH49IA0bcXZoB03oA2gIR0Cs4Uu+ZgG9dX2UKGgGR0CMNqu3c580aAdN6ANoCEdArOSHeHi3onV9lChoBkdAjGDipeeFtmgHTegDaAhHQKzmtGWldkd1fZQoaAZHQIvAJ+UhV2loB03oA2gIR0Cs6KQNTcZcdX2UKGgGR0CK51J4B3iaaAdN6ANoCEdArO5JNfw7T3V9lChoBkdAiyUTibUgCGgHTegDaAhHQKzxQNZvDP51fZQoaAZHQIyvFJQLux9oB03oA2gIR0Cs808fvF3qdX2UKGgGR0CKQCUr08NhaAdN6ANoCEdArPUicwxnF3V9lChoBkdAiaYd6sySFGgHTegDaAhHQKz6zLoOhCd1fZQoaAZHQIaW9MEidJ9oB03oA2gIR0Cs/dDa4+bFdX2UKGgGR0CLyeAe7tiQaAdN6ANoCEdArP/31FpfyHV9lChoBkdAi1ykhRqGlGgHTegDaAhHQK0BzFwT/Q11fZQoaAZHQIujlBppN9JoB03oA2gIR0CtB63xOLzgdX2UKGgGR0CMcTollbu/aAdN6ANoCEdArQq6URnOB3V9lChoBkdAiGcI4MnZ02gHTegDaAhHQK0NaZ4Oc2B1fZQoaAZHQIbikdzXBgxoB03oA2gIR0CtEBEm6XjVdX2UKGgGR0CJobShrWRSaAdN6ANoCEdArRf2xbB42XV9lChoBkdAihPHARChOGgHTegDaAhHQK0a/NSIgvF1fZQoaAZHQIvVCN0eU6hoB03oA2gIR0CtHQE0zj3mdX2UKGgGR0CMpBygf2boaAdN6ANoCEdArR7OT1TR6XV9lChoBkdAiTYdUjs2N2gHTegDaAhHQK0ktujRD1J1fZQoaAZHQIsxmDcuandoB03oA2gIR0CtJ8IJAt4BdX2UKGgGR0CKGRjH4oJBaAdN6ANoCEdArSnUmtyPuHV9lChoBkdAiHDEovzvqmgHTegDaAhHQK0rkzqrzXl1fZQoaAZHQItvHffoA4poB03oA2gIR0CtMTjvd/KAdX2UKGgGR0CJ9WvMbFS9aAdN6ANoCEdArTQzn1WbPXV9lChoBkdAiGjCADq4Y2gHTegDaAhHQK02M1tO2y91fZQoaAZHQIjzYvDgqExoB03oA2gIR0CtN+4s3AEddX2UKGgGR0CKnZwob4rSaAdN6ANoCEdArT1OHk92YHV9lChoBkdAicXe7UXpGGgHTegDaAhHQK1AQ4b0e2d1fZQoaAZHQI0YklzEJjVoB03oA2gIR0CtQk3Gff4zdX2UKGgGR0CJQCY+jdpJaAdN6ANoCEdArUQMP8Q7LnV9lChoBkdAitw4R28qWmgHTegDaAhHQK1JmglF+d91fZQoaAZHQIuI6hi9ZidoB03oA2gIR0CtTJnfVI7OdX2UKGgGR0CL8aEPlMh6aAdN6ANoCEdArU6RW1c+q3V9lChoBkdAi/lt6X0GvGgHTegDaAhHQK1QXudf9gp1fZQoaAZHQIfFNXq7iAFoB03oA2gIR0CtVgAMtseodX2UKGgGR0CKlCwYcebNaAdN6ANoCEdArVjyiVSn+HV9lChoBkdAimXUPH1e0GgHTegDaAhHQK1bBYywfQt1fZQoaAZHQIv7eGj9GZxoB03oA2gIR0CtXNa1b7j1dX2UKGgGR0CKkrN0vGp/aAdN6ANoCEdArWJkRDkU9XV9lChoBkdAiIkVzhgmZ2gHTegDaAhHQK1lT4B3iaR1fZQoaAZHQIzYjAgxJuloB03oA2gIR0CtZ1U3fhuPdX2UKGgGR0CKsnCbc45taAdN6ANoCEdArWkf9cbBGnV9lChoBkdAi9q9i2DxsmgHTegDaAhHQK1umcawUxp1fZQoaAZHQIlpnPJJXhhoB03oA2gIR0CtcZ0AcT8HdX2UKGgGR0CKKZag2606aAdN6ANoCEdArXO7p3X7L3V9lChoBkdAh07/29L6DWgHTegDaAhHQK11ggi/wiJ1fZQoaAZHQIddl7OVxCJoB03oA2gIR0CtevsPJ7swdX2UKGgGR0CFOokzoEB9aAdN6ANoCEdArX4RrSE123V9lChoBkdAirawbEP1+WgHTegDaAhHQK2AHGLDQ7d1fZQoaAZHQInTkQNCqp9oB03oA2gIR0CtgeyzXz19dX2UKGgGR0CGKj238XN1aAdN6ANoCEdArYdWx6fJ3nV9lChoBkdAiaV5qubI92gHTegDaAhHQK2KOZmZmZp1fZQoaAZHQIn5R0nw5NpoB03oA2gIR0CtjDIldC3PdX2UKGgGR0CKywoPTXrdaAdN6ANoCEdArY3trM1TBXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (323 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 843.3986973504973, "std_reward": 52.02802353499574, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T18:04:10.104220"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1514eaceae033a63703b7fca34fc3e6bf79ac9e86cf8e1d09cd0b9356a472a5e
3
+ size 2136