Edison
commited on
Commit
·
0e43bb8
1
Parent(s):
65be213
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: bigcode/starencoder
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: starencoder-vd-25-75
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# starencoder-vd-25-75
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.7599
|
23 |
+
- Accuracy: 0.7019
|
24 |
+
- Precision: 0.7660
|
25 |
+
- Recall: 0.5883
|
26 |
+
- F1: 0.6655
|
27 |
+
- Roc Auc: 0.7028
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 9e-06
|
47 |
+
- train_batch_size: 45
|
48 |
+
- eval_batch_size: 45
|
49 |
+
- seed: 420
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
|
58 |
+
| 0.6213 | 1.0 | 551 | 0.5820 | 0.6628 | 0.6816 | 0.6212 | 0.6500 | 0.6631 |
|
59 |
+
| 0.5585 | 2.0 | 1102 | 0.5802 | 0.6690 | 0.7861 | 0.4715 | 0.5895 | 0.6706 |
|
60 |
+
| 0.5109 | 3.0 | 1653 | 0.5687 | 0.6886 | 0.7681 | 0.5474 | 0.6393 | 0.6897 |
|
61 |
+
| 0.4645 | 4.0 | 2204 | 0.5875 | 0.6973 | 0.7742 | 0.5640 | 0.6526 | 0.6984 |
|
62 |
+
| 0.4161 | 5.0 | 2755 | 0.5819 | 0.7097 | 0.7425 | 0.6491 | 0.6926 | 0.7101 |
|
63 |
+
| 0.3756 | 6.0 | 3306 | 0.6319 | 0.7058 | 0.7451 | 0.6327 | 0.6843 | 0.7064 |
|
64 |
+
| 0.3451 | 7.0 | 3857 | 0.6542 | 0.7025 | 0.7358 | 0.6394 | 0.6842 | 0.7030 |
|
65 |
+
| 0.3144 | 8.0 | 4408 | 0.7204 | 0.7017 | 0.7607 | 0.5955 | 0.6680 | 0.7025 |
|
66 |
+
| 0.2978 | 9.0 | 4959 | 0.7168 | 0.7032 | 0.7524 | 0.6130 | 0.6756 | 0.7040 |
|
67 |
+
| 0.2757 | 10.0 | 5510 | 0.7599 | 0.7019 | 0.7660 | 0.5883 | 0.6655 | 0.7028 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.31.0
|
73 |
+
- Pytorch 2.1.0.dev20230605+cu121
|
74 |
+
- Datasets 2.14.0
|
75 |
+
- Tokenizers 0.13.3
|