Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- w8a8
|
4 |
+
- int8
|
5 |
+
- vllm
|
6 |
+
license: apache-2.0
|
7 |
+
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
base_model: ibm-granite/granite-3.1-2b-instruct
|
11 |
+
library_name: transformers
|
12 |
+
---
|
13 |
+
|
14 |
+
# granite-3.1-2b-instruct-quantized.w8a8
|
15 |
+
|
16 |
+
## Model Overview
|
17 |
+
- **Model Architecture:** granite-3.1-2b-instruct
|
18 |
+
- **Input:** Text
|
19 |
+
- **Output:** Text
|
20 |
+
- **Model Optimizations:**
|
21 |
+
- **Weight quantization:** INT8
|
22 |
+
- **Activation quantization:** INT8
|
23 |
+
- **Release Date:** 1/8/2025
|
24 |
+
- **Version:** 1.0
|
25 |
+
- **Model Developers:** Neural Magic
|
26 |
+
|
27 |
+
Quantized version of [ibm-granite/granite-3.1-2b-instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct).
|
28 |
+
It achieves an average score of xxxx on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves xxxx.
|
29 |
+
|
30 |
+
### Model Optimizations
|
31 |
+
|
32 |
+
This model was obtained by quantizing the weights and activations of [ibm-granite/granite-3.1-2b-instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct) to INT8 data type, ready for inference with vLLM >= 0.5.2.
|
33 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
|
34 |
+
|
35 |
+
## Deployment
|
36 |
+
|
37 |
+
### Use with vLLM
|
38 |
+
|
39 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer
|
43 |
+
from vllm import LLM, SamplingParams
|
44 |
+
|
45 |
+
max_model_len, tp_size = 4096, 1
|
46 |
+
model_name = "neuralmagic-ent/granite-3.1-2b-instruct-quantized.w8a8"
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
+
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
|
49 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
50 |
+
|
51 |
+
messages_list = [
|
52 |
+
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
|
53 |
+
]
|
54 |
+
|
55 |
+
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
|
56 |
+
|
57 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
58 |
+
|
59 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
60 |
+
print(generated_text)
|
61 |
+
```
|
62 |
+
|
63 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
64 |
+
|
65 |
+
## Creation
|
66 |
+
|
67 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
68 |
+
|
69 |
+
|
70 |
+
```bash
|
71 |
+
python quantize.py --model_path ibm-granite/granite-3.1-2b-instruct --quant_path "output_dir/granite-3.1-2b-instruct-quantized.w8a8" --calib_size 3072 --dampening_frac 0.1 --observer mse
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
```python
|
76 |
+
from datasets import load_dataset
|
77 |
+
from transformers import AutoTokenizer
|
78 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
79 |
+
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
|
80 |
+
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply
|
81 |
+
import argparse
|
82 |
+
from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy
|
83 |
+
|
84 |
+
|
85 |
+
parser = argparse.ArgumentParser()
|
86 |
+
parser.add_argument('--model_path', type=str)
|
87 |
+
parser.add_argument('--quant_path', type=str)
|
88 |
+
parser.add_argument('--calib_size', type=int, default=256)
|
89 |
+
parser.add_argument('--dampening_frac', type=float, default=0.1)
|
90 |
+
parser.add_argument('--observer', type=str, default="minmax")
|
91 |
+
args = parser.parse_args()
|
92 |
+
|
93 |
+
model = SparseAutoModelForCausalLM.from_pretrained(
|
94 |
+
args.model_path,
|
95 |
+
device_map="auto",
|
96 |
+
torch_dtype="auto",
|
97 |
+
use_cache=False,
|
98 |
+
trust_remote_code=True,
|
99 |
+
)
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
101 |
+
|
102 |
+
NUM_CALIBRATION_SAMPLES = args.calib_size
|
103 |
+
DATASET_ID = "neuralmagic/LLM_compression_calibration"
|
104 |
+
DATASET_SPLIT = "train"
|
105 |
+
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
106 |
+
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
107 |
+
|
108 |
+
def preprocess(example):
|
109 |
+
concat_txt = example["instruction"] + "\n" + example["output"]
|
110 |
+
return {"text": concat_txt}
|
111 |
+
|
112 |
+
ds = ds.map(preprocess)
|
113 |
+
|
114 |
+
def tokenize(sample):
|
115 |
+
return tokenizer(
|
116 |
+
sample["text"],
|
117 |
+
padding=False,
|
118 |
+
truncation=False,
|
119 |
+
add_special_tokens=True,
|
120 |
+
)
|
121 |
+
|
122 |
+
|
123 |
+
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
124 |
+
|
125 |
+
ignore=["lm_head"]
|
126 |
+
mappings=[
|
127 |
+
[["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"],
|
128 |
+
[["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"],
|
129 |
+
[["re:.*down_proj"], "re:.*up_proj"]
|
130 |
+
]
|
131 |
+
|
132 |
+
recipe = [
|
133 |
+
SmoothQuantModifier(smoothing_strength=0.8, ignore=ignore, mappings=mappings),
|
134 |
+
GPTQModifier(
|
135 |
+
targets=["Linear"],
|
136 |
+
ignore=["lm_head"],
|
137 |
+
scheme="W8A8",
|
138 |
+
dampening_frac=args.dampening_frac,
|
139 |
+
observer=args.observer,
|
140 |
+
)
|
141 |
+
]
|
142 |
+
oneshot(
|
143 |
+
model=model,
|
144 |
+
dataset=ds,
|
145 |
+
recipe=recipe,
|
146 |
+
num_calibration_samples=args.calib_size,
|
147 |
+
max_seq_length=8196,
|
148 |
+
)
|
149 |
+
|
150 |
+
# Save to disk compressed.
|
151 |
+
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
152 |
+
tokenizer.save_pretrained(SAVE_DIR)
|
153 |
+
```
|
154 |
+
|
155 |
+
## Evaluation
|
156 |
+
|
157 |
+
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
|
158 |
+
|
159 |
+
OpenLLM Leaderboard V1:
|
160 |
+
```
|
161 |
+
lm_eval \
|
162 |
+
--model vllm \
|
163 |
+
--model_args pretrained="neuralmagic-ent/granite-3.1-2b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
|
164 |
+
--tasks openllm \
|
165 |
+
--write_out \
|
166 |
+
--batch_size auto \
|
167 |
+
--output_path output_dir \
|
168 |
+
--show_config
|
169 |
+
```
|
170 |
+
|
171 |
+
#### HumanEval
|
172 |
+
##### Generation
|
173 |
+
```
|
174 |
+
python3 codegen/generate.py \
|
175 |
+
--model neuralmagic-ent/granite-3.1-2b-instruct-quantized.w8a8 \
|
176 |
+
--bs 16 \
|
177 |
+
--temperature 0.2 \
|
178 |
+
--n_samples 50 \
|
179 |
+
--root "." \
|
180 |
+
--dataset humaneval
|
181 |
+
```
|
182 |
+
##### Sanitization
|
183 |
+
```
|
184 |
+
python3 evalplus/sanitize.py \
|
185 |
+
humaneval/neuralmagic-ent--granite-3.1-2b-instruct-quantized.w8a8_vllm_temp_0.2
|
186 |
+
```
|
187 |
+
##### Evaluation
|
188 |
+
```
|
189 |
+
evalplus.evaluate \
|
190 |
+
--dataset humaneval \
|
191 |
+
--samples humaneval/neuralmagic-ent--granite-3.1-2b-instruct-quantized.w8a8_vllm_temp_0.2-sanitized
|
192 |
+
```
|
193 |
+
|
194 |
+
### Accuracy
|
195 |
+
|
196 |
+
#### OpenLLM Leaderboard V1 evaluation scores
|
197 |
+
|
198 |
+
| Metric | ibm-granite/granite-3.1-2b-instruct | neuralmagic-ent/granite-3.1-2b-instruct-quantized.w4a16 |
|
199 |
+
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
200 |
+
| ARC-Challenge (Acc-Norm, 25-shot) | 55.63 | 55.12 |
|
201 |
+
| GSM8K (Strict-Match, 5-shot) | 60.96 | 60.58 |
|
202 |
+
| HellaSwag (Acc-Norm, 10-shot) | 75.21 | 74.60 |
|
203 |
+
| MMLU (Acc, 5-shot) | 54.38 | 54.12 |
|
204 |
+
| TruthfulQA (MC2, 0-shot) | 55.93 | 54.87 |
|
205 |
+
| Winogrande (Acc, 5-shot) | 69.67 | 70.80 |
|
206 |
+
| **Average Score** | **61.98** | **61.68** |
|
207 |
+
| **Recovery** | **100.00** | **99.51** |
|
208 |
+
|
209 |
+
#### HumanEval pass@1 scores
|
210 |
+
| Metric | ibm-granite/granite-3.1-2b-instruct | neuralmagic-ent/granite-3.1-2b-instruct-quantized.w4a16 |
|
211 |
+
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
212 |
+
| HumanEval Pass@1 | 53.40 | 0.549 |
|
213 |
+
|