Update README.md
Browse files
README.md
CHANGED
@@ -225,6 +225,76 @@ evalplus.evaluate \
|
|
225 |
</table>
|
226 |
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
|
230 |
|
|
|
225 |
</table>
|
226 |
|
227 |
|
228 |
+
## Inference Performance
|
229 |
+
|
230 |
+
|
231 |
+
This model achieves up to 1.2x speedup in single-stream deployment on L40 GPUs.
|
232 |
+
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
|
233 |
+
|
234 |
+
<details>
|
235 |
+
<summary>Benchmarking Command</summary>
|
236 |
+
|
237 |
+
```
|
238 |
+
guidellm --model neuralmagic/granite-3.1-2b-base-FP8-dynamic --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
|
239 |
+
```
|
240 |
+
|
241 |
+
</details>
|
242 |
+
|
243 |
+
### Single-stream performance (measured with vLLM version 0.6.6.post1)
|
244 |
+
<table>
|
245 |
+
<tr>
|
246 |
+
<td></td>
|
247 |
+
<td></td>
|
248 |
+
<td></td>
|
249 |
+
<th style="text-align: center;" colspan="7" >Latency (s)</th>
|
250 |
+
</tr>
|
251 |
+
<tr>
|
252 |
+
<th>GPU class</th>
|
253 |
+
<th>Model</th>
|
254 |
+
<th>Speedup</th>
|
255 |
+
<th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
|
256 |
+
<th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
|
257 |
+
<th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
|
258 |
+
<th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
|
259 |
+
<th>Instruction Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
|
260 |
+
<th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
|
261 |
+
<th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
|
262 |
+
</tr>
|
263 |
+
<tr>
|
264 |
+
<td style="vertical-align: middle;" rowspan="3" >L40</td>
|
265 |
+
<td>granite-3.1-2b-base</td>
|
266 |
+
<td></td>
|
267 |
+
<td>9.3</td>
|
268 |
+
<td>1.2</td>
|
269 |
+
<td>9.4</td>
|
270 |
+
<td>1.2</td>
|
271 |
+
<td>1.2</td>
|
272 |
+
<td>2.3</td>
|
273 |
+
<td>5.0</td>
|
274 |
+
</tr>
|
275 |
+
<tr>
|
276 |
+
<td>granite-3.1-2b-base-FP8-dynamic<br>(this model)</td>
|
277 |
+
<td>1.26</td>
|
278 |
+
<td>7.3</td>
|
279 |
+
<td>0.9</td>
|
280 |
+
<td>7.4</td>
|
281 |
+
<td>1.0</td>
|
282 |
+
<td>0.9</td>
|
283 |
+
<td>1.8</td>
|
284 |
+
<td>4.1</td>
|
285 |
+
</tr>
|
286 |
+
<tr>
|
287 |
+
<td>granite-3.1-2b-base-quantized.w4a16</td>
|
288 |
+
<td>1.88</td>
|
289 |
+
<td>4.8</td>
|
290 |
+
<td>0.6</td>
|
291 |
+
<td>4.9</td>
|
292 |
+
<td>0.6</td>
|
293 |
+
<td>0.6</td>
|
294 |
+
<td>1.2</td>
|
295 |
+
<td>2.8</td>
|
296 |
+
</tr>
|
297 |
+
</table>
|
298 |
|
299 |
|
300 |
|