Update README.md
Browse files
README.md
CHANGED
@@ -178,18 +178,123 @@ oneshot(
|
|
178 |
|
179 |
## Evaluation
|
180 |
|
181 |
-
The model was evaluated
|
182 |
|
183 |
<details>
|
184 |
<summary>Evaluation Commands</summary>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
|
|
|
|
|
|
|
|
|
|
186 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
|
|
189 |
</details>
|
190 |
|
191 |
### Accuracy
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
## Inference Performance
|
194 |
|
195 |
|
|
|
178 |
|
179 |
## Evaluation
|
180 |
|
181 |
+
The model was evaluated using [mistral-evals](https://github.com/neuralmagic/mistral-evals) for vision-related tasks and using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for select text-based benchmarks. The evaluations were conducted using the following commands:
|
182 |
|
183 |
<details>
|
184 |
<summary>Evaluation Commands</summary>
|
185 |
+
|
186 |
+
### Vision Tasks
|
187 |
+
- vqav2
|
188 |
+
- docvqa
|
189 |
+
- mathvista
|
190 |
+
- mmmu
|
191 |
+
- chartqa
|
192 |
+
|
193 |
+
```
|
194 |
+
vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7
|
195 |
|
196 |
+
python -m eval.run eval_vllm \
|
197 |
+
--model_name neuralmagic/pixtral-12b-quantized.w8a8 \
|
198 |
+
--url http://0.0.0.0:8000 \
|
199 |
+
--output_dir ~/tmp \
|
200 |
+
--eval_name <vision_task_name>
|
201 |
```
|
202 |
+
|
203 |
+
### Text-based Tasks
|
204 |
+
#### MMLU
|
205 |
+
|
206 |
+
```
|
207 |
+
lm_eval \
|
208 |
+
--model vllm \
|
209 |
+
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
|
210 |
+
--tasks mmlu \
|
211 |
+
--num_fewshot 5 \
|
212 |
+
--batch_size auto \
|
213 |
+
--output_path output_dir
|
214 |
+
|
215 |
+
```
|
216 |
+
|
217 |
+
#### MGSM
|
218 |
+
|
219 |
```
|
220 |
+
lm_eval \
|
221 |
+
--model vllm \
|
222 |
+
--model_args pretrained="<model_name>",dtype=auto,max_model_len=4096,max_gen_toks=2048,max_num_seqs=128,tensor_parallel_size=<n>,gpu_memory_utilization=0.9 \
|
223 |
+
--tasks mgsm_cot_native \
|
224 |
+
--num_fewshot 0 \
|
225 |
+
--batch_size auto \
|
226 |
+
--output_path output_dir
|
227 |
|
228 |
+
```
|
229 |
</details>
|
230 |
|
231 |
### Accuracy
|
232 |
|
233 |
+
<table>
|
234 |
+
<thead>
|
235 |
+
<tr>
|
236 |
+
<th>Category</th>
|
237 |
+
<th>Metric</th>
|
238 |
+
<th>Qwen/Qwen2.5-VL-7B-Instruct</th>
|
239 |
+
<th>Qwen2.5-VL-7B-Instruct-quantized.w8a8</th>
|
240 |
+
<th>Recovery (%)</th>
|
241 |
+
</tr>
|
242 |
+
</thead>
|
243 |
+
<tbody>
|
244 |
+
<tr>
|
245 |
+
<td rowspan="6"><b>Vision</b></td>
|
246 |
+
<td>MMMU (val, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td>
|
247 |
+
<td>52.00</td>
|
248 |
+
<td>52.33</td>
|
249 |
+
<td>100.63%</td>
|
250 |
+
</tr>
|
251 |
+
<tr>
|
252 |
+
<td>VQAv2 (val)<br><i>vqa_match</i></td>
|
253 |
+
<td>75.59</td>
|
254 |
+
<td>75.46</td>
|
255 |
+
<td>99.83%</td>
|
256 |
+
</tr>
|
257 |
+
<tr>
|
258 |
+
<td>DocVQA (val)<br><i>anls</i></td>
|
259 |
+
<td>94.27</td>
|
260 |
+
<td>94.09</td>
|
261 |
+
<td>99.81%</td>
|
262 |
+
</tr>
|
263 |
+
<tr>
|
264 |
+
<td>ChartQA (test, CoT)<br><i>anywhere_in_answer_relaxed_correctness</i></td>
|
265 |
+
<td>86.44</td>
|
266 |
+
<td>86.16</td>
|
267 |
+
<td>99.68%</td>
|
268 |
+
</tr>
|
269 |
+
<tr>
|
270 |
+
<td>Mathvista (testmini, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td>
|
271 |
+
<td>69.47</td>
|
272 |
+
<td>70.47</td>
|
273 |
+
<td>101.44%</td>
|
274 |
+
</tr>
|
275 |
+
<tr>
|
276 |
+
<td><b>Average Score</b></td>
|
277 |
+
<td><b>75.95</b></td>
|
278 |
+
<td><b>75.90</b></td>
|
279 |
+
<td><b>99.93%</b></td>
|
280 |
+
</tr>
|
281 |
+
<tr>
|
282 |
+
<td rowspan="3"><b>Text</b></td>
|
283 |
+
<td>MGSM (CoT)</td>
|
284 |
+
<td>58.72</td>
|
285 |
+
<td>59.92</td>
|
286 |
+
<td>102.04%</td>
|
287 |
+
</tr>
|
288 |
+
<tr>
|
289 |
+
<td>MMLU (5-shot)</td>
|
290 |
+
<td>71.09</td>
|
291 |
+
<td>70.57</td>
|
292 |
+
<td>99.27%</td>
|
293 |
+
</tr>
|
294 |
+
</tbody>
|
295 |
+
</table>
|
296 |
+
|
297 |
+
|
298 |
## Inference Performance
|
299 |
|
300 |
|